

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

Deferred tax valuation

A market based approach

Tjeerd de Vries[†]

[†]PhD student economics UC San Diego

November 7, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

1 Introduction

2 Option interpretation

3 Results

4 Empirical application

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

1 Introduction

Option interpretation

3 Results

4 Empirical application

5 Conclusion

・ロト・日本・日本・日本・日本・日本

Motivation

Deferred tax valuation

Tjeerd de Vries

- Introduction
- Option interpretation
- Results
- Empirical application
- Conclusion

- Solvency 2 harmonizes EU insurance regulation and provide guidelines on capital requirements
- Deferred taxes are important. Under Solvency 2 can be used to mitigate capital requirements
- Pillar of Solvency 2 is market based accounting
- However, extant valuation methods are not market based.
 Extant valuation based on all or nothing scenarios.
- In practice, this means that DTA's are *overestimated* and insurers hold too little capital.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

I Introduction

2 Option interpretation

3 Results

4 Empirical application

5 Conclusion

・ロト・日本・日本・日本・日本・日本

A new valuation approach

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

- Each type of deferred tax is contingent on future profits, with a payoff structure depending on the type of deferral.
- The firm has an "option" on the IRS, which can be exercised if the company is profitable enough (or unprofitable).
- In this presentation I focus on loss carryforward.
- Loss carryforward is the allowance to use current losses to offset *future* tax payments (tax on corporate profit).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Loss carryforward

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

- I assume that taxable profit consists of the difference in asset value in two consecutive periods (if positive) and is zero otherwise.
- Similar to counter factual framework
- The post-tax value of a company without fiscal history is given by

$$\widetilde{A}_1 = A_1 - \tau \underbrace{\max(A_1 - A_0, 0)}_{\text{taxable profit}}$$

 Suppose an otherwise identical company has carryforward (*CF*) available. The value of the company after paying tax equals

$$\widetilde{\mathcal{A}}_1^{(cf)} = \mathcal{A}_1 - au \max(\mathcal{A}_1 - \mathcal{A}_0 - \mathcal{CF}, 0)$$

• Use the difference, $\widetilde{A}_1^{(cf)} - \widetilde{A}_1$, as the added value of the DTA.

Carryforward value

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

Introduction

Option interpretation

3 Results

4 Empirical application

5 Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Risk neutral pricing

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

Assume the following asset price dynamics

$$\frac{dA_t}{A_t} = \mu dt + \sigma dB_t$$

- I also assume the *idealized market assumptions*, as in the seminal Merton (1974) paper on pricing of corporate debt.
- The valuation of deferred taxes becomes isomorphic to an option valuation problem.
- This allows to apply risk-neutral pricing and renders the following firm value accounting for taxes

$$V^{BS} = e^{-r} \mathbb{E}^Q (\widetilde{A}_1 | \mathcal{F}_0), \ \mathcal{F}_t = \sigma(B_s : s \leq t).$$

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

- For ease of exposition I focus on 1-year time horizon.
- Multiple period model is done in the paper with Monte Carlo simulation.

• Use the notation
$$C^{BS}(K) \triangleq C^{BS}(K, T, A_t, \sigma, r, t)$$
. for

price of a Black-Scholes call option. Similarly define $P^{BS}(K)$.

人口 医水黄 医水黄 医水黄素 化甘油

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

• The market based value of carryforward then becomes

$$\xi_{cf}^{BS} = \tau e^{-r} \mathbb{E}^{Q} \left(\underbrace{\max(A_{1} - A_{0}, 0)}_{\text{Counterfactual}} - \underbrace{\max(A_{1} - A_{0} - CF, 0)}_{\text{Firm with DTA}} | \mathcal{F}_{0} \right)$$
$$= \tau (C^{BS}(A_{0}) - C^{BS}(A_{0} + CF)).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\stackrel{\text{Put-Call parity}}{=} e^{-r} \tau CF - \underbrace{\tau \left(P^{BS}(A_0 + CF) - P^{BS}(A_0) \right)}_{\text{Settlement risk}}$$

(In)variance of capital structures

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

- Empirical application
- Conclusion

- Previous analysis ignores the capital structure of a company (debt/equity financing). This is in line with the first Modigliani-Miller theorem.
- However, capital markets are not perfect due to taxation.
- If we take capital structures into account, then the carryforward value changes due to debt financing.
- First deduct interest payment from taxable income, then DT's can be used.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

This renders a more general formula for loss carryforward

$$\xi_{cf}^{BS} = \tau \underbrace{\left(C^{BS}(A_0 + r^*D) - C^{BS}(A_0 + CF_1 + r^*D)\right)}_{\text{Decreases in } r^*}.$$

- Formula shows that *CF* value diminishes trough debt financing.
- Intuitively, the value deduction for CF arises as there is less profit after interest is paid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Back to Modigliani-Miller (MM)

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatior

Conclusion

MM value of interest tax shield (adapted to continuous time setting)

$$\tau e^{-r}r^*D$$

- MM tacitly assume that the tax shield is completely realized.
- In reality, the tax shield is also an option and its value can be analyzed by the exact same methods introduced for DTA's.

$$R^{\mathsf{BS}} \triangleq \mathcal{V}^{\mathsf{BS}} - V^{\mathsf{BS}} = \tau \bigg(C^{\mathsf{BS}}(A_0) - C^{\mathsf{BS}}(A_0 + r^*D) \bigg).$$
 (1)

• Special case of general formula (1) when $\lim \sigma \downarrow 0$, provided

$$\underbrace{(e^r-1)A_0}_{}>r^*D$$

Taxable income

Multi year model

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

- Empirical application
- Conclusion

 "Payoff structure" becomes more complicated. Assuming no fiscal history, we get

$$\widetilde{\mathcal{A}}_2 = \mathcal{A}_2 - au(\mathcal{A}_2 - \widetilde{\mathcal{A}}_1 - \mathbb{1}_{\mathcal{A}_1 < \mathcal{A}_0}(\mathcal{A}_0 - \mathcal{A}_1))^+.$$

- This is a variant of the *compound option*; an option on an option. Analytical expressions are much more involved, but can be found in the paper.
- Have to make assumptions about the time losses can be carried forward/backward
- Can easily be estimated by Monte Carlo simulation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

996

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

I Introduction

Option interpretation

3 Results

5 Conclusion

・ロト・雪ト・ヨト・ヨー うへで

Loss absorbing capacity of deferred taxes

Deferred tax valuation

Tjeerd de Vries

Introduction

- Option interpretation
- Results
- Empirical application
- Conclusion

 Data on 2851 European insurance companies. Information on EOF, Assets (A₀), Debt (D), Average debt duration, Forward rates r(t), net DTA position, SCR, EIOPA Lac DT estimate, applicable tax rate (τ), Dummy carryback, duration carryforward

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I assume that debt is *risk-free*

Solvency ratio

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

Recall

 $\label{eq:Solvency ratio} \mathsf{Solvency\ ratio} = \frac{\mathsf{Eligible\ own\ funds}}{\mathsf{Solvency\ capital\ requirements} - \mathsf{LAC\ DT}}$

- Solvency 2 dictates ratio should be larger than 1
- SCR is 99.5% Value-at-risk of assets (withstand shock bound to occur every 200 years)
- LAC DT := post shock net DTA ex-ante net DTA
- LAC DT is at most $\tau \times$ Loss in assets. In reality its worth less

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Market based approach

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

Recalculate **net DTA** from EIOPA, in market consistent framework. Simulate with

$$\tilde{A}_{T,i} \sim \underbrace{(A_0, T, r_{\text{forward},T}, \hat{\sigma}, D, C, \tau)}_{\text{counterfactual}}$$

$$\tilde{A}_{T,i}^{cf} \sim \underbrace{(A_0, T, r_{\text{forward},T}, \hat{\sigma}, D, C, \tau, CF_1)}_{\text{Firm with DT}}$$

Calculate DTA value as

$$mcf = e^{-rT} \frac{1}{I} \sum_{i}^{I} \widetilde{A}_{T,i}^{(cf)} - e^{-rT} \frac{1}{I} \sum_{i}^{I} \widetilde{A}_{T,i}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure: Scatter diagram of market consistent calculations of **net DTA** vs. **net DTA** calculated by EIOPA

LAC DT calculations

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

 Assume 1-in 200 year shock, equal to SCR. Simulate asset paths of

$$\widetilde{A}_{T,i} \sim \underbrace{(A_0 - SCR, T, r_{\text{forward}, T}, \hat{\sigma}, D, C, \tau, CF_1 = SCR)}_{\text{counterfactual}}$$

$$\widehat{A}_{T,i}^{(ct)} \sim \underbrace{(A_0 - SCR, T, r_{\text{forward}, T}, \hat{\sigma}, D, C, \tau, CF_1 + SCR)}_{\text{Firm with DT}}$$

Calculate post shock DTA value as

$$mcf_{post-shock} = e^{-rT} \frac{1}{I} \sum_{i}^{I} \widetilde{A}_{T,i}^{(cf)} - e^{-rT} \frac{1}{I} \sum_{i}^{I} \widetilde{A}_{T,i}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

Figure: Estimated LAC DT EIOPA (*x*-axis) vs. LAC DT market consistent (*y*-axis)

Solvency 2 ratio

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical application

Conclusion

Recalculate Solvency ratio
 Solvency ratio* = Eligible own funds*
 Solvency capital requirements - LAC DT*

Eligible own funds* =

Eligible own funds

- $-\min(\max(\text{net DTA}, 0), 0.15 \cdot (SCR LAC DT))$
- min(**net DTA**, 0)
- $+\min(\max(\textbf{net DTA}^*,0), 0.15 \cdot (\textit{SCR} \textsf{LAC DT}^*))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $+ \min(\text{net DTA}^*, 0).$

Result

Deferred tax valuation

Tjeerd de Vries

Introduction

- Option interpretation
- Results
- Empirical application
- Conclusion

- We find a total of 29 insurance companies that have Solvency ratio < 1, under market consistent approach.
- My approach shows that decrease in ô might negatively influence DTA value (not taken into account by current methods). Hence, de-risking might even lead to further decrease in Solvency ratio!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Deferred tax valuation

Tjeerd de Vries

Introduction

Option interpretation

Results

Empirical applicatio

Conclusion

I Introduction

Option interpretation

3 Results

4 Empirical application

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Conclusion

Deferred tax valuation

Tjeerd de Vries

Introduction

- Option interpretation
- Results
- Empirical application
- Conclusion

- Provide a new way to value tax deferrals by recognizing the option component and contingent nature of the claim.
- Resulting valuation formulas are smooth and take into account that future profit/losses are uncertain
- Similar reasoning can be applied to obtain a more general version of the Modigliani-Miller result.
- Empirical application shows the importance of this new valuation, recognizing 29 insurance companies that cannot meet the Solvency capital requirement.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00