
A Quantile Approach to Evaluating Asset Pricing
Models

Tjeerd de Vries - UCSD

August 21, 2023

T. de Vries A Quantile Approach August 21, 2023 1 / 39



Outline

1 Introduction

2 Quantile Approach

3 Time-varying Disaster Risk

4 Implications for the Stochastic Discount Factor

5 Conclusion

T. de Vries A Quantile Approach August 21, 2023 2 / 39



Introduction

How to Evaluate Asset Pricing Models?

A central question in finance: what drives Et [Rm,t→N ]−Rf,t→N ?

Rm,t→N is the return on the market (S&P500) from t to t+N
Rf,t→N is risk-free rate, observed at time t
Et [·] is the conditional expectation

Misspecification benchmark: How well does an asset pricing model
match the mean or variance of the market return

This paper: use quantiles to analyze misspecification in the entire
distribution

Which segment of the return distribution in the asset pricing model
is most misspecified
Model-free and accounts for conditional information
Highlights the importance of disaster risk
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Introduction

Literature Review

Misspecification of asset pricing models: Hansen and Jagannathan
(1991), Stutzer (1995), Bansal and Lehmann (1997), Alvarez and
Jermann (2005), Almeida and Garcia (2012), Liu (2021)

(Time varying) disaster risk : Rietz (1988), Barro (2006),
Weitzman (2007), Bollerslev and Todorov (2011), Gabaix (2012),
Wachter (2013), Isoré and Szczerbowicz (2017), Farhi and Gourio
(2018), Seo and Wachter (2019)

Recovering forward looking beliefs: Ross (2015), Borovička,
Hansen, and Scheinkman (2016), Martin (2017), Qin and Linetsky
(2017), Martin and Wagner (2019), Schneider and Trojani (2019),
Chabi-Yo and Loudis (2020)

Nonparametrcic SDF estimation: Aı̈t-Sahalia and Lo (1998),
Jackwerth (2000), Rosenberg and Engle (2002), Beare and
Schmidt (2016), Linn, Shive, and Shumway (2018), Cuesdeanu and
Jackwerth (2018)
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Quantile Approach

Framework

Returns evolve according to Rm,t→N ∼ Pt (physical measure)

No-arbitrage assumption: there exists P̃t (risk-neutral measure),
such that

Ẽt (Rm,t→N ) = Rf,t→N

Differences between Pt and P̃t induce a risk premium:

Et [Rm,t→N ]−Rf,t→N = Et [Rm,t→N ]− Ẽt (Rm,t→N ) > 0 (1)

Suppose we know Pt, then there are many P̃t consistent with (1)

In this sense, evaluating a model based on explaining (1) may not
give a complete picture
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Quantile Approach

Quantile Approach

Let Qt,τ and Q̃t,τ denote the quantile functions of the physical and
risk-neutral measures

τ = Pt(Rm,t→N ≤ Qt,τ ) =: Ft(Qt,τ )

τ = P̃t(Rm,t→N ≤ Q̃t,τ ) =: F̃t(Q̃t,τ ) for all τ ∈ (0, 1)

This paper considers Qt,τ − Q̃t,τ

A local discrepancy measure between Pt and P̃t
Figure

Fundamental difficulty: Qt,τ is not observed from asset prices

This paper: infers Qt,τ − Q̃t,τ indirectly from observed asset prices

Robust to model misspecification
Accounts for conditional information

Model-free approach is important. For example, disaster risk
models are notoriously hard to estimate
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Quantile Approach

Econometric Model

To measure Qt,τ − Q̃t,τ , I consider

Qt,τ (Rm,t→N )︸ ︷︷ ︸
Unobserved

= β0(τ) + β1(τ) Q̃t,τ (Rm,t→N )︸ ︷︷ ︸
Observed

, ∀τ ∈ (0, 1)

Benchmark: if the world is risk-neutral, β0(τ) = 0 and β1(τ) = 1
for all τ

More generally, departures from [β0(τ), β1(τ)] = [0, 1] reflect a
local discrepancy between Pt and P̃t at τ

th percentile

Estimate the model by quantile regression

[β̂0(τ), β̂1(τ)] = argmin
(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ ),

where ρτ (x) = x(τ − 1 (x < 0)) Figure
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Quantile Approach

Estimation

Recall [β̂0(τ), β̂1(τ)] = argmin(β0,β1)∈R2

∑T
t=1 ρτ (Rm,t→N − β0 − β1Q̃t,τ )

Q̃t,τ is observed in from asset prices since

F̃t

(
K

St

)
= Rf,t→N

∂

∂K
Putt(K)

Putt(K) is the price of a (European) put option with payoff
max(K −Rm,t→N , 0) Figure

The insight is Rm,t→N ∼ Pt

Quantile regression estimates best linear approximation to Qt,τ

Similar to how OLS estimates best linear approximation to
Et [Rm,t→N ]

Key benefit: only use observed data {Rm,t→N , Q̃t,τ}Tt=1
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Quantile Approach

To evaluate how close Qt,τ is to Q̃t,τ , I use two other measures of
fit

R1(τ), analogue of OLS R2:

R1(τ) := 1−
minb0,b1

∑T
t=1 ρτ (Rm,t→N − b0 − b1Q̃t,τ )

minb0
∑T

t=1 ρτ (Rm,t→N − b0)

R1
oos(τ), analogue of OLS out-of-sample R2:

R1
oos(τ) := 1−

∑T
t=w ρτ (Rm,t→N − Q̃t,τ )∑T
t=w ρτ (Rm,t→N −Qt,τ )

,

where w is the initial sample size and Qt,τ the historical rolling
quantile
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Quantile Approach

Data and Empirical Results

For Rm,t→N , I use overlapping 30-day returns on the S&P500 from
2003–2021

For Q̃t,τ , I use (European) Put and Call option data on the
S&P500 over the same period

Table shows that Pt and P̃t are similar in the right-tail, but not in
the left-tail

Model-free evidence for disaster risk

Results are similar at longer horizons (60 and 90 days)
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Quantile Approach

Empirical Results

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Hit[%]

30 days* 0.05 0.43
(0.220)

0.56
(0.235)

0.01 6.28 6.11 -2.67
(0.699)

0.1 0.45
(0.244)

0.54
(0.254)

0.03 3.45 1.01 -3.56
(1.162)

0.2 0.69
(0.375)

0.30
(0.382)

0.10 0.55 0.89 -3.73
(1.695)

0.5 -0.60
(0.307)

1.61
(0.305)

0.00 1.65 2.24 -8.07
(2.567)

0.8 -0.09
(0.163)

1.09
(0.158)

0.23 12.44 12.50 -3.24
(2.221)

0.9 0.03
(0.113)

0.97
(0.108)

0.96 20.41 21.88 -0.04
(1.509)

*(Obs. 4333) 0.95 0.12
(0.119)

0.89
(0.113)

0.51 27.07 31.31 0.27
(1.120)
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Quantile Approach

Interpreting the Results

To match the data, an asset pricing model should imply distinct
physical and risk-neutral measures in the left tail Figure

Equity premium is driven by disaster risk

Et [Rm,t→N ]−Rf,t→N =

∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ

=

∫
¯
τ

0

(
Qt,τ − Q̃t,τ

)
dτ︸ ︷︷ ︸

disaster risk

+

∫ 1

¯
τ

(
Qt,τ − Q̃t,τ

)
dτ

Recovery theorem: Pt ≈ P̃t in the right-tail, and P̃t was obtained
model-free
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Quantile Approach

Comparison with Existing Estimation Methods

An alternative approach nonparametrically estimates
Mt(x) := f̃t(x)/ft(x), where f̃t and ft denote the risk-neutral and
physical density

Aı̈t-Sahalia and Lo (1998), Jackwerth (2000) and Rosenberg and
Engle (2002) estimate an average pricing kernel

hard to account for conditional information

Linn, Shive, and Shumway (2018) and Cuesdeanu and Jackwerth
(2018) use sieve estimation that accounts for conditional
information

unclear which basis functions to choose and how many
optimization is non-convex; sometimes undefined
estimated ft(x) cannot change shape
in simulation, quantile regression is much more precise

In addition, for quantile regression

no need to estimate ft(x)

requires only Q̃t,τ , not f̃t(x)
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Quantile Approach

Conditional Lognormal Model

Consider a Black-Scholes type model

Rm,t→N = exp([µ− 1

2
σ2
t ] + σtZt+1), Et [Rm,t→N ] = eµ under Pt

Rm,t→N = exp([rf − 1

2
σ2
t ] + σtZt+1), Ẽt (Rm,t→N ) = erf under P̃t

=⇒ Mt(x) :=
f̃t(x)

ft(x)
= Ctx

−
(

µ−rf
σt

)
,

where σt is conditional volatility and Zt+N ∼ N (0, 1)

One can show: Qt,τ = e(µ−rf )Q̃t,τ , and quantile regression will find
it

Sieve estimation yields an estimate Mt(x) = Ctg(x), where g(x) is
time invariant

Does not account for time variation in σt; shape is time invariant

The paper generalizes to time varying µt and rf,t
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Time-varying Disaster Risk

Approximating the Left-tail

Recent papers argue that time-varying disaster risk is important
to explain expected returns

Definition of time-varying disaster risk typically depends on
parameters in a model

As a general definition, I adopt Qt,τ at τ = 0.05 to represent
disaster risk

Previous results suggest Qt,τ ≫ Q̃t,τ when τ = 0.05, so cannot use
the risk-neutral quantile in this region

Is there a way to approximate Qt,τ − Q̃t,τ in the left-tail?
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Time-varying Disaster Risk

Risk-adjustment in the Left-tail

Some functional analysis gives (von-Mises calculus) Figure

Qt,τ − Q̃t,τ =
τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )︸ ︷︷ ︸
unobserved risk-adjustment

+ o
(∥∥∥Ft − F̃t

∥∥∥)︸ ︷︷ ︸
small under no near-arbitrage

Under certain conditions, I show

Theorem

τ − Ft

(
Q̃t,τ

)
≥

∑3
k=1

(−1)k+1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k+1

Rk
f,t→N

M̃(k)
t→N

=: LBt,τ ,

where

M̃(n)
t→N := Ẽt [(Rm,t→N −Rf,t→N )n]

M̃(n)
t→N [k0] := Ẽt [1 (Rm,t→N ≤ k0) (Rm,t→N −Rf,t→N )n]
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Time-varying Disaster Risk

Risk-adjustment in the Left-tail

Combining the previous results renders an observed inequality

Qt,τ − Q̃t,τ ≥

risk-adjustment︷ ︸︸ ︷
LBt,τ

f̃t(Q̃t,τ )
=: RAt,τ

If the inequality is tight, we have an observed measure of
time-varying disaster risk

To test this, I form quantile adjusted returns, Rm,t→N − Q̃t,τ

Then use quantile regression to estimate

Qt,τ (Rm,t→N )− Q̃t,τ (Rm,t→N ) = β0(τ) + β1(τ)RAt,τ

A tight lower bound suggests β0(τ) = 0 and β1(τ) = 1 for all τ

T. de Vries A Quantile Approach August 21, 2023 17 / 39



Time-varying Disaster Risk

Quantile Regression Lower Bound

Horizon
(in days)

β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] Obs

τ = 0.05 30 -0.01
(0.006)

4.43
(0.350)

0.00 6.03 4333

60 -0.01
(0.018)

5.53
(0.717)

0.00 3.60 4312

90 -0.02
(0.040)

6.37
(1.385)

0.00 4.91 4291

τ = 0.1 30 -0.01
(0.006)

2.17
(0.420)

0.02 3.18 4333

60 -0.02
(0.014)

3.25
(0.602)

0.00 2.23 4312

90 -0.02
(0.024)

3.05
(0.703)

0.00 4.43 4291

τ = 0.2 30 -0.01
(0.006)

1.33
(0.418)

0.03 0.41 4333

60 -0.02
(0.013)

1.50
(0.506)

0.49 0.48 4312

90 -0.02
(0.022)

1.36
(0.694)

0.76 1.46 4291
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Time-varying Disaster Risk

The lower bound is not tight, but a highly relevant predictor

Can be interpeted as a quantile factor model:

Qt,τ = Q̃t,τ + β(τ)RAt,τ

I also consider a direct quantile forecast without estimation

Q̂t,τ = Q̃t,τ +RAt,τ

Qt,τ (Rm,t→N ) = β0(τ) + β1(τ)Q̂t,τ

Point estimates are closer to the [0, 1]-benchmark and R1
oos(τ) is

higher relative to using Q̃t,τ only

In sum, RAt,τ is a good proxy for Qt,τ in the left-tail, and hence
for disaster risk

T. de Vries A Quantile Approach August 21, 2023 19 / 39



Time-varying Disaster Risk

Risk-adjusted Quantile Regression

Horizon
(in days)

β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Obs

τ = 0.05 30 0.29
(0.283)

0.70
(0.301)

0.13 6.28 9.94 4333

60 0.30
(0.434)

0.71
(0.484)

0.06 3.40 17.81 4312

90 0.36
(0.594)

0.64
(0.687)

0.10 4.26 21.98 4291

τ = 0.1 30 0.28
(0.310)

0.72
(0.322)

0.27 3.57 4.02 4333

60 0.38
(0.444)

0.61
(0.472)

0.22 2.35 9.22 4312

90 0.31
(0.613)

0.70
(0.664)

0.13 4.19 13.22 4291

τ = 0.2 30 0.57
(0.499)

0.43
(0.507)

0.47 0.58 2.53 4333

60 0.44
(0.617)

0.56
(0.630)

0.40 0.57 4.28 4312

90 0.23
(0.760)

0.78
(0.774)

0.56 0.70 5.99 4291
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Time-varying Disaster Risk

Disaster Risk and Peso Problem

Ross (2015) on disaster risk: “It is unseen and not directly
observable but it exerts a force that can change over time and that
can profoundly influence markets”

Disaster risk has two components

Insurance: If investors pay more to insure against disaster risk, it
drives down Q̃t,τ

Probability: If investors perceive a higher likelihood of a loss, it
drives down Qt,τ

Normally these effects cannot be untangled since Qt,τ is

unobserved, but Qt,τ ≈ Q̃t,τ +RAt,τ Figure

Find that both effects are important, but insurance effect is more
dominant

At the height of the 2008 financial crisis and 2020 Covid crisis, a
market return of −28% or lower has a 5% probability
57 times higher than historical estimate

T. de Vries A Quantile Approach August 21, 2023 21 / 39



Time-varying Disaster Risk

Disaster Risk and Peso Problem

Ross (2015) on disaster risk: “It is unseen and not directly
observable but it exerts a force that can change over time and that
can profoundly influence markets”

Disaster risk has two components

Insurance: If investors pay more to insure against disaster risk, it
drives down Q̃t,τ

Probability: If investors perceive a higher likelihood of a loss, it
drives down Qt,τ

Normally these effects cannot be untangled since Qt,τ is

unobserved, but Qt,τ ≈ Q̃t,τ +RAt,τ Figure

Find that both effects are important, but insurance effect is more
dominant

At the height of the 2008 financial crisis and 2020 Covid crisis, a
market return of −28% or lower has a 5% probability
57 times higher than historical estimate

T. de Vries A Quantile Approach August 21, 2023 21 / 39



Implications for the Stochastic Discount Factor

Stochastic Discount Factor

Foregoing results suggest Qt,τ ≫ Q̃t,τ , or τ − Ft(Q̃t,τ ) ≫ 0

What does this imply about the stochastic discount factor (SDF),
Mt→N (x) = f̃t(x)/ft(x)? Notice Et [Mt→NRm,t→N ] = 1

The SDF is typically the focal point in asset pricing models, as
opposed to F̃t

In representative agent models, the SDF can be interpreted as the
marginal utility of wealth (or substitution)

Suppose an agent has CRRA utility with risk-aversion γ and
time-discount factor β, then

Mt→N = β

(
Ct+N

Ct

)−γ

,

where Ct and Ct+N denote consumption
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Implications for the Stochastic Discount Factor

Hansen-Jagannathan Bound

In a seminal paper, Hansen and Jagannathan (1991) showed

σt(Mt→N )

Et [Mt→N ]
≥

Et [Rm,t→N ]−Rf,t→N

σt(Rm,t→N )

Using historical estimates, the right hand side is about 0.5

Under iid assumption and power utility, the latter implies
γσ(Ct+N/Ct) ≥ 0.5

Since σ(Ct+N/Ct) is about 1%, we must have γ ≥ 50, a huge level
of risk-aversion (Equity premium puzzle)
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Implications for the Stochastic Discount Factor

Quantile Version of Hansen-Jagannathan

Let ϕt(τ) = Ft(Qt,τ ). If the world is risk-neutral, ϕt(τ) = τ .

Hence, τ − ϕt(τ) reflects locally how much Pt and P̃t differ

In the spirit of Hansen and Jagannathan (1991), I derive a
quantile bound

Proposition (Quantile bound)

Assume no-arbitrage, then

σt(Mt→N )

Et [Mt→N ]
≥ |τ − ϕt(τ)|√

ϕt(τ)(1− ϕt(τ))
∀τ ∈ (0, 1)

Any pointwise difference between Pt and P̃t leads to a volatile SDF

Previous results show that volatility comes from the left-tail
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Implications for the Stochastic Discount Factor

Quantile Bound in Disaster Risk Models

Consider the disaster risk model in Backus, Chernov, and Martin
(2011)

logMt+1 = log β − γ logGt+1,

where Gt+1 = Ct+1/Ct is consumption growth in period t+ 1, and

logGt+1 = z1,t+1 + z2,t+1, z1,t+1 ∼ N (µ, σ2), z2,t+1|j ∼ N (jθ, jδ2),

and j is Poisson

z2,t+1 captures occasional disasters

The model pins down P and Mt+1, and as a result P̃
The quantile bound shows the effect on SDF volatility when
disasters are introduced (z2,t+1 ≡ 0 vs. z2,t+1 random) Figure
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Implications for the Stochastic Discount Factor

Quantile Bound in the Data

Estimate the quantile bound on S&P500 returns

Bound peaks around 5th percentile and is stronger than HJ bound

Shape is similar to that predicted by disaster risk model Figure

Additional model-free evidence for disaster risk
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Conclusion

Conclusion

This paper takes a local approach to evaluate asset pricing models

Compare quantiles of physical and risk-neutral distribution
Quantile regression estimates Qt,τ − Q̃t,τ

Accounts for time-varying conditional information and is
model-free

Computationally simpler and more accurate than extant methods

Considers misspecification over the entire distribution, not just
mean or variance

Find in the left-tail, Qt,τ and Q̃t,τ are very different, but not in the
right-tail

Model-free evidence for disaster risk

Propose a model-free measure of time varying disaster risk

Repercussions for modeling Pt and the SDF
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Time Variation at 5th Percentile

(a) Q̃t,τ +RAt,τ (b) RAt,τ ≈ Qt,τ − Q̃t,τ
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