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How to Evaluate Asset Pricing Models?

o A central question in finance: what drives E; [Ry, —sn] — Rft—n 7

o R, ¢ n is the return on the market (S&P500) from ¢ to t + N
o Ry N is risk-free rate, observed at time ¢
o E,[] is the conditional expectation

e Misspecification benchmark: How well does an asset pricing model
match the mean or variance of the market return

e This paper: use quantiles to analyze misspecification in the entire
distribution
e Which segment of the return distribution in the asset pricing model
is most misspecified
e Model-free and accounts for conditional information
e Highlights the importance of disaster risk
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Introduction

Literature Review

o Misspecification of asset pricing models: Hansen and Jagannathan
(1991), Stutzer (1995), Bansal and Lehmann (1997), Alvarez and
Jermann (2005), Almeida and Garcia (2012), Liu (2021)

o (Time varying) disaster risk: Rietz (1988), Barro (2006),
Weitzman (2007), Bollerslev and Todorov (2011), Gabaix (2012),
Wachter (2013), Isoré and Szczerbowicz (2017), Farhi and Gourio
(2018), Seo and Wachter (2019)

e Recovering forward looking beliefs: Ross (2015), Borovicka,
Hansen, and Scheinkman (2016), Martin (2017), Qin and Linetsky
(2017), Martin and Wagner (2019), Schneider and Trojani (2019),
Chabi-Yo and Loudis (2020)

e Nonparametrcic SDF estimation: Ait-Sahalia and Lo (1998),
Jackwerth (2000), Rosenberg and Engle (2002), Beare and
Schmidt (2016), Linn, Shive, and Shumway (2018), Cuesdeanu and
Jackwerth (2018)
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Quantile Approach

Framework

e Returns evolve according to Ry, —n ~ P (physical measure)

No-arbitrage assumption: there exists P (risk-neutral measure),
such that

]Et (Rm,t—>N) = Rf,t—)N

Differences between P; and ﬁ’t induce a risk premium:
E¢ [Rm,taN] — Ry v =K [Rm,t%N] - IEt (Rmi—»n) >0 (1)

o Suppose we know P, then there are many P, consistent with (1)

In this sense, evaluating a model based on explaining (1) may not
give a complete picture
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Quantile Approach

Quantile Approach

o Let @, and @w denote the quantile functions of the physical and
risk-neutral measures

T =P (RN < Qir) = Fi(Qrr)
T = Pt(Rm,tﬁN < @t,r) = ﬁt(@tﬂ') for all 7 € (Oa 1)

e This paper considers Q; r — va
o A local discrepancy measure between P; and ]}v”t
e Fundamental difficulty: @);, is not observed from asset prices

o This paper: infers Q¢ — @t,T indirectly from observed asset prices

e Robust to model misspecification
e Accounts for conditional information

o Model-free approach is important. For example, disaster risk
models are notoriously hard to estimate
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Quantile Approach

Econometric Model

e To measure Q;, — Q¢ -, I consider

Qtr(Rmt—sn) = Po(T) + Br(7) @t,r(Rm,t—W)a V7 € (0,1)
—_—— — —_———
Unobserved Observed

e Benchmark: if the world is risk-neutral, fo(7) = 0 and 51(7) =1

for all 7

o More generally, departures from [£o(7), 81(7)] = [0, 1] reflect a
local discrepancy between P; and P, at 7t percentile

o Estimate the model by quantile regression

T

[Bo(7), B1(7)] = argmin > pr(Rmesn — Bo — B1@Qrr),
(Bo,B1)€R? t=1

where p-(z) = z(7 — 1 (x < 0))
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Quantile Approach

Estimation
e Recall [Bo(7), B1(7)] = argmin g, 5, )en2 Sorey pr(Rmiosn — o — BrQur)
° va is observed in from asset prices since
~ (K 0
FFl=—|=R —Put, (K
() = R Pu)
e Puty(K) is the price of a (European) put option with payoff
max(K — Ry, 4, 0)
e The insight is Ry, iy ~ Py
o Quantile regression estimates best linear approximation to Q; -
o Similar to how OLS estimates best linear approximation to
Et [Rm,tﬂN]
o Key benefit: only use observed data {Rm,t_> N, Qt,T}?:l
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Quantile Approach

e To evaluate how close @y is to Q¢ -, I use two other measures of

fit
o RY(7), analogue of OLS R?:

Iingy p, Sy pr(Bingsn — by — b1Qu7)

RY(r) =1 - 7
ming, > ;1 pr(Rmt—n — bo)

o R! (1), analogue of OLS out-of-sample R?:

R]. (7_> — 1 _ Zz:w pT(Rm,t—>N - @t,'r)
. ZtT:w Pr (Rm,t—>N - Qt,r)

where w is the initial sample size and Cjw the historical rolling
quantile
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Quantile Approach

Data and Empirical Results

e For R, ;—n, I use overlapping 30-day returns on the S&P500 from
2003-2021

e For @t,T, I use (European) Put and Call option data on the
S&P500 over the same period

o Table shows that P; and Iﬁ’t are similar in the right-tail, but not in
the left-tail

@ Model-free evidence for disaster risk

o Results are similar at longer horizons (60 and 90 days)
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Quantile Approach

Empirical Results

Horizon T Bo(r)  Bul(r) V\(faldlte)st RY ()% Rl ()% Hit[%]
p-value

30 days” 0.06  0.43 0.56 0.01 6.28 6.11 -2.67
(0.220)  (0.235) (0.699)

0.1 0.45 0.54 0.03 3.45 1.01 -3.56

(0.244)  (0.254) (1.162)

0.2 0.69 0.30 0.10 0.55 0.89 -3.73

(0.375)  (0.382) (1.695)

0.5 -0.60 1.61 0.00 1.65 2.24 -8.07

(0.307)  (0.305) (2.567)

0.8 -0.09 1.09 0.23 12.44 12.50 -3.24

(0.163)  (0.158) (2.221)

0.9 0.03 0.97 0.96 20.41 21.88 -0.04

(0.113)  (0.108) (1.509)

*(Obs. 4333) 0.95 0.12 0.89 0.51 27.07 31.31 0.27
(0.119)  (0.113) (1.120)
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Quantile Approach

Interpreting the Results

e To match the data, an asset pricing model should imply distinct
physical and risk-neutral measures in the left tail

o Equity premium is driven by disaster risk
1 ~
Ey [Rm,t—>N] - Rf,t—>N = / (Qt,r - Qt,‘r> dr
0

= /OI <Qt,7’ - ét,f) dr + /T1 <Qt,7’ - ét,r) dr

TV
disaster risk

o Recovery theorem: P; ~ ]I~”t in the right-tail, and ]I~Dt was obtained
model-free
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Quantile Approach

Comparison with Existing Estimation Methods

o An alternative approach nonparametrically estimates
M (x) = fi(z)/fi(x), where f; and f; denote the risk-neutral and
physical density

e Ait-Sahalia and Lo (1998), Jackwerth (2000) and Rosenberg and
Engle (2002) estimate an average pricing kernel

e hard to account for conditional information
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Quantile Approach

Comparison with Existing Estimation Methods

o An alternative approach nonparametrically estimates
M (x) = fi(z)/fi(x), where f; and f; denote the risk-neutral and
physical density

e Ait-Sahalia and Lo (1998), Jackwerth (2000) and Rosenberg and
Engle (2002) estimate an average pricing kernel

e hard to account for conditional information

e Linn, Shive, and Shumway (2018) and Cuesdeanu and Jackwerth
(2018) use sieve estimation that accounts for conditional
information

unclear which basis functions to choose and how many

optimization is non-convex; sometimes undefined

estimated f;(x) cannot change shape

in simulation, quantile regression is much more precise

e In addition, for quantile regression
o 1o need to estimate fi(x)
o requires only @y r, not f(z)
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Quantile Approach

Conditional Lognormal Model

e Consider a Black-Scholes type model

1
Roytsn = eXp([“‘ o 50’?} + UtZt+1)7 E, [Rmﬂf—’N] ="
1 ™ r
R iosn = exp([ry — 50?] +0¢Zi11), E; (Rm,t—n) =€’/
fi() -(451)
= M(z) = = Cix 7/,
@) fe(z) '
where oy is conditional volatility and Z;1ny ~ N(0,1)
T. de Vries A Quantile Approach August 21, 2023
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Quantile Approach

Conditional Lognormal Model

e Consider a Black-Scholes type model

1
Rt~ =exp([u — 5‘7?} + 0t Zi41), Ei [Rm,t—N] = et under P

1 r ~
Rt~ = exp([ry — 50?] + 01 Zi41), Ei (Rmisn) =€"7 under P,

— st = g} = ().

where oy is conditional volatility and Z;1y ~ N (0, 1)
e One can show: Q. = elh=ry )@tm and quantile regression will find
it
e Sieve estimation yields an estimate M;(x) = Cig(z), where g(x) is
time invariant
e Does not account for time variation in oy; shape is time invariant

e The paper generalizes to time varying p; and ry;
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Time-varying Disaster Risk

Approximating the Left-tail

o Recent papers argue that time-varying disaster risk is important
to explain expected returns

@ Definition of time-varying disaster risk typically depends on
parameters in a model

e As a general definition, I adopt Q;r at 7 = 0.05 to represent
disaster risk
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Time-varying Disaster Risk

Approximating the Left-tail

o Recent papers argue that time-varying disaster risk is important
to explain expected returns

@ Definition of time-varying disaster risk typically depends on
parameters in a model

e As a general definition, I adopt Q;r at 7 = 0.05 to represent
disaster risk

e Previous results suggest Q¢ » > @t; when 7 = 0.05, so cannot use
the risk-neutral quantile in this region

o Is there a way to approximate Q;r — @w in the left-tail?
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Time-varying Disaster Risk

Risk-adjustment in the Left-tail
e Some functional analysis gives (von-Mises calculus)

~ — F(O ~

Qr—Gue=  TEQ (g )
ft (Qt,T)

small under no near-arbitrage

unobserved risk-adjustment

@ Under certain conditions, I show

Theorem
3 —1)kHt (ke Se(k) 1
5 D k=1 Sal;z ~ (TME—ZN - ME—ZN[QLT])
T—Ft( t-r)Z = = =: LB¢,r
; 3 (LR (k 79
14+3 75 531; ZHN ML)N

where

M)y = E¢ [(RmtoN — Ryesn)"]
M [ko] := B [1 (Rt < ko) (Rm,t—sn — Rytsn)"]

August 21, 2023 16 / 39
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Time-varying Disaster Risk

Risk-adjustment in the Left-tail

Combining the previous results renders an observed inequality

risk-adjustment
P —
LBt T
)

];(CQLT)

If the inequality is tight, we have an observed measure of
time-varying disaster risk

Qt,‘r - Qt,‘r Z

t,T

To test this, I form quantile adjusted returns, R, N — @t,T

Then use quantile regression to estimate

Qt,T(Rm,t%N> - @t,’r (Rm,t—>N) = 50(7—) + /81 (T)RAt,T

A tight lower bound suggests So(7) = 0 and 51(7) =1 for all 7

T. de Vries A Quantile Approach August 21, 2023
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Time-varying Disaster Risk

Quantile Regression Lower Bound

Horizon Bo(r) Bi(r) Wald test RM(7)[%] Obs

(in days) (p-value)
7=0.05 30 -0.01 4.43 0.00 6.03 4333
(0.006) (0.350)
60 -0.01 5.53 0.00 3.60 4312
(0.018) (0.717)
90 -0.02 6.37 0.00 4.91 4291
(0.040)  (1.385)
7=0.1 30 -0.01 2.17 0.02 3.18 4333
(0.006)  (0.420)
60 -0.02 3.25 0.00 2.23 4312
(0.014)  (0.602)
90 -0.02 3.05 0.00 4.43 4291
(0.024)  (0.703)
7=0.2 30 -0.01 1.33 0.03 0.41 4333
(0.006)  (0.418)
60 -0.02 1.50 0.49 0.48 4312
(0.013)  (0.506)
90 -0.02 1.36 0.76 1.46 4291

(0.022)  (0.694)
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Time-varying Disaster Risk

The lower bound is not tight, but a highly relevant predictor

Can be interpeted as a quantile factor model:

Qir = Qur + B(T)RA,

I also consider a direct quantile forecast without estimation
Qt,‘r = Qt,T + RAtfr
Qur(Bimi—n) = Bo(T) + S1(T)Qu,r

Point estimates are closer to the [0, 1]-benchmark and R}, (7) is
higher relative to using @); only

In sum, RA; ; is a good proxy for Q; - in the left-tail, and hence
for disaster risk
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Time-varying Disaster Risk

Risk-adjusted Quantile Regression

Horizon fBo(r) Bi(r) Wald test RY(7)[%] RL.(7)[%] Obs

(in days) (p-value)
7=20.05 30 0.29 0.70 0.13 6.28 9.94 4333
(0.283)  (0.301)
60 0.30 0.71 0.06 3.40 17.81 4312
(0.434)  (0.484)
90 0.36  0.64 0.10 4.26 21.98 4291
(0.594)  (0.687)
7=0.1 30 0.28  0.72 0.27 3.57 4.02 4333
(0.310)  (0.322)
60 0.38  0.61 0.22 2.35 9.22 4312
(0.444)  (0.472)
90 0.31 0.70 0.13 4.19 13.22 4291
(0.613)  (0.664)
7=02 30 0.57 043 0.47 0.58 2.53 4333
(0.499)  (0.507)
60 0.44 0.56 0.40 0.57 4.28 4312
(0.617)  (0.630)
90 0.23 0.78 0.56 0.70 5.99 4291

(0.760)  (0.774)
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Time-varying Disaster Risk

Disaster Risk and Peso Problem

e Ross (2015) on disaster risk: “It is unseen and not directly

observable but it exerts a force that can change over time and that
can profoundly influence markets”

e Disaster risk has two components

o Insurance: If investors pay more to insure against disaster risk, it
drives down Q-

e Probability: If investors perceive a higher likelihood of a loss, it
drives down Q¢ -
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Time-varying Disaster Risk

Disaster Risk and Peso Problem

Ross (2015) on disaster risk: “It is unseen and not directly
observable but it exerts a force that can change over time and that
can profoundly influence markets”

Disaster risk has two components

o Insurance: If investors pay more to insure against disaster risk, it
drives down Q-

e Probability: If investors perceive a higher likelihood of a loss, it
drives down Q¢ -

Normally these effects cannot be untangled since @y, is
unobserved, but Q;r =~ va +RA:,
Find that both effects are important, but insurance effect is more
dominant
o At the height of the 2008 financial crisis and 2020 Covid crisis, a
market return of —28% or lower has a 5% probability
e 57 times higher than historical estimate
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Implications for the Stochastic Discount Factor

Stochastic Discount Factor

e Foregoing results suggest Q¢ > @tm or 7 — Ft(@m) >0

o What does this imply about the stochastic discount factor (SDF),
M sn(z) = fi(z)/ fi(x)? Notice E; [MysnRmi—n] =1

e The SDF is typically the focal point in asset pricing models, as
opposed to F}
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Implications for the Stochastic Discount Factor

Stochastic Discount Factor

Foregoing results suggest Q¢ > @tm or 7 — Ft(@t,f) >0

What does this imply about the stochastic discount factor (SDF),
M sn(z) = fi(z)/ fi(x)? Notice E; [MysnRmi—n] =1

The SDF is typically the focal point in asset pricing models, as
opposed to F}

In representative agent models, the SDF can be interpreted as the
marginal utility of wealth (or substitution)

Suppose an agent has CRRA utility with risk-aversion v and
time-discount factor 3, then

C -
Mt—)N = B( tC—zN> ;

where C; and Cyyn denote consumption
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Implications for the Stochastic Discount Factor

Hansen-Jagannathan Bound

e In a seminal paper, Hansen and Jagannathan (1991) showed

Ut(Mt—>N) > E; [Rm,t—>N] - Rf,t%N
E; [Myn] — ot(Rmt—N)

e Using historical estimates, the right hand side is about 0.5

o Under 11D assumption and power utility, the latter implies
"YU(Ct—I—N/Ct) Z 0.5

e Since 0(Cy4n/CY) is about 1%, we must have v > 50, a huge level
of risk-aversion (Equity premium puzzle)
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Implications for the Stochastic Discount Factor

Quantile Version of Hansen-Jagannathan

o Let ¢y(7) = Fy(Qt ). If the world is risk-neutral, ¢;(7) = 7.
e Hence, 7 — ¢(7) reflects locally how much P, and P, differ

e In the spirit of Hansen and Jagannathan (1991), I derive a
quantile bound

Proposition (Quantile bound)

Assume no-arbitrage, then

M) I — )
B [Mion] — /(7)) (1 = ¢u(7))

V1 € (0,1)

e Any pointwise difference between P; and I?’t leads to a volatile SDF

@ Previous results show that volatility comes from the left-tail

T. de Vries A Quantile Approach August 21, 2023 24 /39



Implications for the Stochastic Discount Factor

Quantile Bound in Disaster Risk Models

o Consider the disaster risk model in Backus, Chernov, and Martin
(2011)

log M¢y1 = log 8 — 7y log G4,
where Gy11 = Cy41/Cy is consumption growth in period ¢ + 1, and
log Gi1 = 21,0401 + 22,041, 21,041 ~ N (1, 02)» 22,0415 ~ N(j97j52)7

and j is Poisson

® 29441 captures occasional disasters
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Implications for the Stochastic Discount Factor

Quantile Bound in Disaster Risk Models

o Consider the disaster risk model in Backus, Chernov, and Martin
(2011)

log M¢y1 = log 8 — 7y log G4,
where Gy11 = Cy41/Cy is consumption growth in period ¢ + 1, and
log Gi1 = 21,0401 + 22,041, 21,041 ~ N (1, 02)» 22,0415 ~ N(j97j52)7

and j is Poisson

® 29441 captures occasional disasters

@ The model pins down P and M1, and as a result P

o The quantile bound shows the effect on SDF volatility when
disasters are introduced (22441 = 0 vs. 22441 random)
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Implications for the Stochastic Discount Factor

Quantile Bound in the Data

Estimate the quantile bound on S&P500 returns
Bound peaks around 5% percentile and is stronger than HJ bound
Shape is similar to that predicted by disaster risk model

Additional model-free evidence for disaster risk
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Conclusion

Conclusion

This paper takes a local approach to evaluate asset pricing models

o Compare quantiles of physical and risk-neutral distribution
o Quantile regression estimates Q¢ — Q¢+

Accounts for time-varying conditional information and is
model-free

Computationally simpler and more accurate than extant methods

o Considers misspecification over the entire distribution, not just
mean or variance
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Conclusion

Conclusion

This paper takes a local approach to evaluate asset pricing models

o Compare quantiles of physical and risk-neutral distribution
o Quantile regression estimates Q¢ — Q¢+

Accounts for time-varying conditional information and is
model-free

Computationally simpler and more accurate than extant methods

Considers misspecification over the entire distribution, not just
mean or variance

Find in the left-tail, Q; - and @t; are very different, but not in the
right-tail
e Model-free evidence for disaster risk

Propose a model-free measure of time varying disaster risk

Repercussions for modeling P; and the SDF
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Quantile Loss Function at 7 = 0.1
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Jump-diffusion with stochastic volatility
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