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Abstract

I introduce a model-free methodology to assess the impact of disaster risk

on the market return. Using S&P500 returns and the risk-neutral quantile

function derived from option prices, I employ quantile regression to estimate

local differences between the conditional physical and risk-neutral distributions.

The results indicate substantial disparities primarily in the left-tail, reflecting

the influence of disaster risk on the equity premium. These differences vary

over time and persist beyond crisis periods. On average, the bottom 5% of

ex-ante returns contribute to 17% of the equity premium, shedding light on the

Peso problem. I also find that disaster risk increases the stochastic discount

factor’s volatility. Using a lower bound observed from option prices on the

left-tail difference between the physical and risk-neutral quantile functions, I

obtain similar results, reinforcing the robustness of my findings.
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1 Introduction

Disaster risk has emerged as a pervasive and influential concept in asset pricing, of-

fering a prominent explanation of the equity premium puzzle, as well as other asset

pricing puzzles.1 Little is known, however, about the quantitative properties of dis-

aster risk and evidence for it is often inferred indirectly, such as from the historically

high equity premium. Nevertheless, a high equity premium does not necessarily arise

due to disaster risk, and the literature has yet to reach an unambiguous conclusion

regarding its ability to explain asset pricing puzzles (see, e.g., Julliard and Ghosh

(2012)). Ross (2015) refers to disaster risk as dark matter and summarizes the con-

cept as follows: “It is unseen and not directly observable but it exerts a force that

can change over time and that can profoundly influence markets”.

In this paper, I propose a model-free methodology to measure and track disaster

risk in S&P500 returns through time. My results unequivocally show that disaster

risk is pervasive and is a primary determinant of the equity premium. In establishing

these results, I confront two critical challenges that have hindered inference so far

about disaster risk. Firstly, to estimate disaster risk in a model-free manner, the

literature often estimates the stochastic discount factor (SDF), defined as the ratio

of risk-neutral to physical density. Disaster risk is then thought of as the tendency

of the SDF to take large values in the left-tail of the return distribution. However,

this approach faces scrutiny due to the potential for erratic results when estimating

the density ratio in the tails, thereby complicating robust inference. Secondly, it is

crucial to account for changing conditioning information. Typically, estimation of

the physical density involves pooling historical returns, while the risk-neutral density

relies on forward-looking option prices. This disparity in information sets can lead

to inconsistent estimates of conditional disaster risk.

To address these challenges, I consider an approach that avoids the need for

density estimation. Starting from the absence of arbitrage opportunities, a risk-

neutral distribution exists that can be identified from option prices without assuming

any model (Breeden and Litzenberger, 1978). However, the conditional physical

distribution, which describes the actual evolution of the market return, remains

unobserved. To proceed, I use quantile regression (QR) to estimate

Qt,τ (Rm,t→N )︸ ︷︷ ︸
Unobserved

= β0(τ) + β1(τ) Q̃t,τ (Rm,t→N )︸ ︷︷ ︸
Observed

τ ∈ (0, 1), (1.1)

1See, for example, Rietz (1988), Barro (2006, 2009), Drechsler and Yaron (2011), Gabaix (2012),
Wachter (2013), Constantinides and Ghosh (2017), Isoré and Szczerbowicz (2017), Farhi and Gourio
(2018), Seo and Wachter (2019) and Schreindorfer (2020).
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where Qt,τ and Q̃t,τ represent the physical and risk-neutral τ -quantiles, respectively,

of the market return Rm,t→N , from period t to t + N . The parameters in (1.1)

can be estimated using quantile regression, with the observed time series of returns,

{Rm,t→N}Tt=1, as the dependent variable and {Q̃t,τ}Tt=1 as the regressor. Impor-

tantly, both Rm,t→N and Q̃t,τ are conditioned on the same information set.

In general, quantile regression estimates the best linear approximation to the

physical quantile function, from which Rm,t→N is drawn. But because the risk-

neutral quantile function is a highly non-linear transformation of state variables,

the estimation accommodates non-linear dependence between the physical quantile

function and the state variables it depends on. Hence, any deviation from the risk-

neutral benchmark, [β0(τ), β1(τ)] = [0, 1], signifies a local difference between the

physical and risk-neutral measures at the τ -quantile. Since the equity premium is

determined by these differences, it is natural to define disaster risk premia as the

difference between Qt,τ and Q̃t,τ in the left-tail, i.e. for values of τ close to zero.

Based on the QR estimates, two key findings emerge: (i) the risk-neutral bench-

mark cannot be rejected in the right-tail (τ ≥ 0.7) but it is rejected in the left-tail

(τ ≤ 0.3); and (ii) the in-sample and out-of-sample explanatory power of the risk-

neutral quantile is significantly higher in the right-tail compared to the left-tail. Both

findings suggest that disaster risk is the main driver of the equity premium.

Building on these results, I estimate the conditional Lorenz curve and Gini co-

efficient associated with the equity premium. These statistics summarize how much

the conditional equity premium is driven by the lowest returns (disaster), akin to its

interpretation of wealth inequality in labor economics. I find that the Lorenz curve

is always concave, and the Gini coefficients are far above zero in every time period,

thus showing that disaster risk is a pervasive feature of the data. On average, I find

that ex-ante returns below the 5th percentile contribute to 17% of the total equity

premium.

While this result demonstrates that disaster risk is an important driver of ex-

pected returns, it also adds nuance to the degree of disaster risk necessary to explain

the equity premium. In particular, previous papers attribute about 90% of the eq-

uity premium to returns below the 5th percentile (Barro, 2009; Backus et al., 2011;

Beason and Schreindorfer, 2022). The results differ since I account for conditioning

information embedded in the risk-neutral quantile function, whereas unconditional

estimates of disaster risk tend to overestimate this risk, since the physical distribu-

tion acquires fatter tails when averaging out state variables.
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Comparing the physical and risk-neutral quantile functions over time also sheds

light on the role of risk aversion and forward-looking beliefs in jointly determining

disaster risk premia. Particularly during crises, the value of an insurance contract

that hedges against disaster risk increases, resulting in a downward movement in the

left-tail of the risk-neutral quantile function. Simultaneously, investors often revise

their beliefs about the likelihood of another disaster, frequently assigning a higher

probability to such an event. This effect drives down the left-tail of the physical quan-

tile function, creating an ambiguous overall impact on disaster risk premia. However,

the quantile regression estimates indicate that the risk-neutral quantile function de-

creases proportionally more, highlighting the greater influence of risk aversion in

determining disaster risk premia.

Given that the equity premium is primarily driven by disaster risk premia, the

discussion above implies that the left-tail of the risk-neutral quantile function can

predict the equity premium. An OLS regression of the equity premium against the

5% risk-neutral quantile shows preliminary evidence of forecasting ability, especially

out-of-sample. In line with theoretical expectations, a decline in the 5% risk-neutral

quantile is associated with a substantial increase in the equity premium. Notably,

during the 2008 financial crisis and the 2020 Covid-19 crisis, monthly estimates of

the equity premium reached peaks of around 5%.

Besides the equity premium puzzle, the QR estimates shed light on the role of

first-order stochastic dominance and the pricing kernel puzzle. Specifically, I find

that Q̃t,τ < Qt,τ holds across most of the distribution, except in the far right-tail,

where Q̃t,τ > Qt,τ frequently occurs. This violation of stochastic dominance raises

questions in asset pricing models using the expected utility framework, as it suggests

that a representative investor exhibits negative risk aversion. Furthermore, I show

that a violation of stochastic dominance implies that the pricing kernel is not mono-

tonic, thereby confirming the pricing kernel puzzle while accounting for conditioning

information, and without the need to estimate a density ratio.

To further understand the influence of disaster risk on the pricing kernel, I intro-

duce a distribution bound on the SDF volatility that is closely related to the Hansen

and Jagannathan (1991) bound. The distribution bound summarizes the risk-return

trade-off of an asset paying out one dollar when the market return falls below a

certain threshold. I show that disaster risk makes the risk-return trade off highly

favorable by going short in an asset paying one dollar in case of a disaster. The price

of such an asset is high because investors are willing to pay a significant premium
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to insure against disaster risk, but the risk is limited since the actual probability

of a disaster is comparatively low. The Sharpe ratio associated to this investment

therefore dominates the Sharpe ratio of a direct investment in the market portfolio.

Specifically, in the data, the Sharpe ratio on selling an asset that pays out one dollar

if the return falls below the 5th percentile is 30% in monthly units, while the Sharpe

ratio of investing in the market portfolio is only 13%. I also show that models which

do not embed a source of disaster risk, such as conditional lognormal models, cannot

rationalize this finding.

I conclude by proposing a model-free lower bound on disaster risk premia to

assess the robustness of my earlier findings. This lower bound is observed from op-

tion prices and is inspired by recent bounds on the equity premium (Martin, 2017;

Chabi-Yo and Loudis, 2020). Using quantile regression, I show that the lower bound

explains a substantial proportion of the fluctuation in disaster risk premia over time.

Moreover, the lower bound relaxes the assumption of a time-homogeneous relation

between the physical and risk-neutral quantile functions. Empirically, the lower

bound closely aligns with the disaster risk estimates derived from quantile regres-

sion, further strengthening the robustness of my earlier findings.

1.1 Related Literature

My approach, which uses quantile regression to estimate local dispersions between

the physical and risk-neutral distribution, is related to a larger body of literature that

estimates the pricing kernel from returns and option data (Aı̈t-Sahalia and Lo, 2000;

Jackwerth, 2000; Rosenberg and Engle, 2002; Beare and Schmidt, 2016; Linn et al.,

2018; Cuesdeanu and Jackwerth, 2018). However, estimating the pricing kernel from

returns and options can be challenging, especially in the tails of the distribution,

where the ratio of densities that defines the pricing kernel can become unstable. In

addition, using historical returns to estimate the physical density can lead to incon-

sistent results (Linn et al., 2018). Beason and Schreindorfer (2022) apply a similar

methodology to decompose the unconditional equity premium.

In contrast, QR can be used to draw inference on the pricing kernel indirectly, by

leveraging the observed realized return and risk-neutral distribution, which avoids

the estimation of a density ratio. Furthermore, QR can account for changes in the

shape and scale of the underlying SDF over time due to changing conditional infor-

mation, while the approach of Cuesdeanu and Jackwerth (2018) renders an estimate

of the SDF that only allows the normalizing constant to be time-varying, since the

shape and scale are time invariant (see Section 4.1).
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I use the QR estimates to shed light on disaster risk, by analyzing the Lorenz

curve associated to the equity premium. Effectively, quantiles decompose the equity

premium state-by-state, which is conceptually different from prior literature such as

Schneider (2019) and Chabi-Yo and Loudis (2023), whose decompositions rely on

averages across the return distribution. This state-by-state decomposition allows

one to diagnose more precisely which part of the return distribution contributes to

the equity premium. Unlike Schneider (2019), I also incorporate time series data,

which enhances estimation of the physical measure. Chabi-Yo and Loudis (2023) is

more closely aligned with my methodology since they decompose the market return

into three distinct components. However, the estimation of the physical measure

differs significantly, as I rely on quantile regression rather than non-linear weighted

least squares. Notably, quantile regression proves to be more robust, especially in

the tails. Beason and Schreindorfer (2022) also employ a state-by-state decompo-

sition but provide unconditional estimates, potentially leading to an overestimation

of disaster risk. Specifically, my methodology shows that the worst 5% of returns

contribute only 17% to the equity premium, while Beason and Schreindorfer (2022)

report an estimate of 91.5%.

My approach to infer conditional disaster risk is also related to the high-frequency

literature. Bollerslev and Todorov (2011) and Bollerslev et al. (2015) use semi-

martingale theory to dissect which part of the equity premium is coming from down-

side/upside risk. This approach is very general but limited to short horizons. Fur-

thermore, it separates the contribution from diffusion and jump risk, while the QR

approach can also be used for any part of the return distribution. The QR approach

does not require the specification of underlying state variables driving the economy,

as these variables are implicitly embedded within the risk-neutral quantile function.

A similar rationale has been applied by Andersen et al. (2015) in a high-frequency

context, leveraging derivative prices to gain insights into qualitative features of latent

state variables.

Complementary to the QR estimates, I derive a nonparametric bound on the SDF

volatility closely related to the bound of Hansen and Jagannathan (1991). They argue

that the SDF is necessarily volatile and use this observation to screen asset pricing

models. Several papers have built on this insight using higher-order moment bounds

(Snow, 1991; Almeida and Garcia, 2012; Liu, 2021) and entropy bounds (Stutzer,

1995; Bansal and Lehmann, 1997; Alvarez and Jermann, 2005; Backus et al., 2014).

These bounds all provide a measure of how much the risk-neutral distribution differs

from the physical distribution. Unlike the distribution bound, all of these measures
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are global in that they rely on averages over the entire state space. The distribution

bound in this paper is a function rather than a single statistic and can be considered

an intermediate approach between a single bound and a complete estimate of the

SDF.

The last part of this paper is also related to the growing literature on using op-

tions to estimate forward-looking equity premia (Martin, 2017; Martin and Wagner,

2019; Chabi-Yo and Loudis, 2020). However, unlike those papers that focus on the

conditional expectation of excess returns, this paper uses option data to bound con-

ditional return quantiles. Since the obtained bound does not require any parameter

estimation and provides information on the entire distribution, it complements the

recovery literature (Ross, 2015; Schneider and Trojani, 2019). Furthermore, the ob-

served time variation in the approximation for the left-tail quantile, as documented

in this paper, aligns with the concept of time-varying disaster risk proposed in var-

ious models by Gabaix (2012), Wachter (2013), Constantinides and Ghosh (2017),

Isoré and Szczerbowicz (2017), Farhi and Gourio (2018) and Seo and Wachter (2019).

The rest of this paper is organized as follows. Section 2 presents the main empiri-

cal results from the quantile regressions and its consequences for the equity premium

and SDF are discussed in Section 3. Section 4 provides further evidence on the

robustness of QR to estimate disaster risk relative to extant approaches. Section

5 introduces the distribution bound, discusses its use in asset pricing models, and

presents estimates of the distribution bound from empirical data. Building on the

results of Sections 2 and 3, Section 6 establishes a model-free lower bound on disaster

risk premia. Finally, Section 7 concludes.

2 Empirical Estimates of Quantile Difference

This section documents empirical estimates of the conditional difference between the

physical and risk-neutral quantile functions. I first discuss the notation and then

consider an example to clarify the idea and motivate the methodology.

2.1 Notation

Let Rm,t→N denote the market return from period t to t + N , where N typically

represents 30-, 60-, or 90-days. The risk-free rate over the same period is denoted

by Rf,t→N , which is assumed to be known at time t. In the absence of arbitrage,

there exists a positive random variable Mt→N such that, conditional on the investor’s

information at time t,

Et [Mt→NRm,t→N ] = 1. (2.1)
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The random variable Mt→N is referred to as the stochastic discount factor (SDF)

and the expectation in (2.1) is calculated under the physical probability measure

Pt, which is the actual distribution of the market return, i.e. Rm,t→N ∼ Pt. The

SDF can potentially depend on many state variables, but these are suppressed from

the notation for brevity. It is convenient to restate (2.1) in terms of risk-neutral

probabilities:

Ẽt (Rm,t→N ) = 1/Et [Mt→N ] = Rf,t→N ,

where the expectation is calculated under the risk-neutral measure P̃t induced by

Mt→N . Finally, Ft(x) := Pt(Rm,t→N ≤ x) denotes the physical CDF of the market

return conditional on the investor’s information available at time t, ft(·) denotes

the conditional probability density function (PDF) and Qt,τ denotes the conditional

τ -quantile. As before, a tilde superscript refers to the risk-neutral measure, so that

F̃t(Q̃t,τ ) = P̃t

(
Rm,t→N ≤ Q̃t,τ

)
= τ, ∀τ ∈ (0, 1).

The physical and risk-neutral quantiles depend on the underlying random variable

Rm,t→N (i.e., Q̃t,τ := Q̃t,τ (Rm,t→N )), but I typically omit this dependence as the

underlying random variable always refers to the market return.

To clarify my approach of using quantiles to analyze disaster risk, I consider the

following asset pricing model that will be used several times in the paper.

Example 2.1 (Disaster risk). Consider the disaster risk model analyzed in Backus

et al. (2011). The SDF process is given by

logMt→N = log β − γ logGt→N ,

where β is a time discount factor, γ is the coefficient of relative risk aversion, and

Gt→N = Ct+N/Ct is consumption growth in period t + N . Consumption growth

follows a two-component structure:

logGt→N = z1,t+N + z2,t+N , z1,t+N ∼ N (µ, σ2),

and z2,t+N is a Poisson mixture of normals to capture jumps representing rare shocks

to consumption growth that are large in magnitude. The number of jumps, j, take

on nonnegative integer values with probability e−ωωj/j!, and conditional on j, the

jump term is normal: z2,t+N |j ∼ N (jθ, jδ2). Backus et al. (2011) show that the

risk-neutral distribution of consumption growth in a representative agent model is

again a normal mixture with parameters:

µ̃ = µ− γσ2, ω̃ = ωe−γθ+(γδ)2 , θ̃ = θ − γδ2. (2.2)
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In this setup, risk aversion amplifies the jump frequency (ω̃ > ω if θ < 0) as well as

the jump size (θ̃ < θ). If the model is calibrated such that θ ≪ 0, then z2,t+N can

be interpreted as a disaster shock if a jump takes place (j ≥ 1).

Figures 1a and 1b illustrate the impact of jumps on the physical and risk-neutral

quantile functions. Specifically, in the absence of jumps, the market return follows a

lognormal distribution and Figure 1a shows that the difference between the physical

and risk-neutral quantile functions is approximately equal in both tails. However,

when jumps are introduced, this difference is almost entirely concentrated in the left-

tail. This result is driven by the impact of jumps on the risk-neutral distribution,

and the requirement that θ < 0 is crucial to drive a wedge between the physical and

risk-neutral measures in the left-tail (see (2.2)). The question is whether these dis-

tinct shape restrictions on the physical and risk-neutral distribution are supported

by the data.
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Figure 1: Effect of jumps on physical and risk-neutral quantile functions.
The left panel displays the physical and risk-neutral quantile functions without jumps (ω = 0),
while the right panel illustrates the quantile functions with jumps (ω = 1.4). In both cases, the
mean of the disaster shock (θ) is set to −0.0074. The market return is defined as a levered claim
on the consumption asset. The trapezoids represent the difference in quantile functions at the 10th
and 90th percentiles.

2.2 Methodology and Econometric Model

Building on the discussion in Example 2.1, it is of interest to estimate the quantile

difference between the physical and risk-neutral measures. The disaster risk model

predicts that these differences are significant in the left-tail while negligible in the

right-tail. This is because investors’ marginal utility of wealth in states associated
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with a disaster is very high. Consequently, the following excess return,

Ẽt [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
price

−Et [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
expected payoff

= F̃t(x)− Ft(x),

can be rather high for thresholds x in the left-tail. The price is high because investors

are willing to pay for insurance against disaster risk, even though the actual prob-

ability of a disaster can be significantly lower. This effect drives a wedge between

the physical and risk-neutral CDFs in the left-tail. For analytical and estimation

convenience, it proves more fruitful to consider the inverse of the CDFs (i.e., the

quantile functions). Therefore, I consider Qt,τ − Q̃t,τ , and refer to these differences

in the left-tail as disaster risk premia.

While the conditional risk-neutral distribution and its quantile function can be in-

ferred from option prices without specific modeling assumptions (Breeden and Litzen-

berger, 1978), the same cannot be said for the physical distribution, unless strong

assumptions are made about the martingale component of the SDF (Ross, 2015;

Borovička et al., 2016). The information available about the conditional physical

distribution is limited to a single realization of the market return, as Rm,t→N follows

Pt conditional on time t. Consequently, the primary challenge in measuring disas-

ter risk premia lies in the unobservable nature of Qt,τ , which has made model-free

inference challenging thus far.

2.2.1 Risk-Neutral Quantile Regression

In order to overcome this difficulty, I assume the following model for the physical

quantile function

Qt,τ (Rm,t→N )︸ ︷︷ ︸
Unobserved

= β0(τ) + β1(τ) Q̃t,τ (Rm,t→N )︸ ︷︷ ︸
Observed

, ∀τ ∈ (0, 1). (2.3)

If the world is risk-neutral, [β0(τ), β1(τ)] = [0, 1] for all τ . Departures from risk-

neutrality at a specific percentile τ are reflected by point estimates of [β0(τ), β1(τ)]

that are far from the [0, 1] benchmark. Given a sample of T observations {Rm,t→N , Q̃t,τ}Tt=1,

the unknown parameters in (2.3) can be estimated by quantile regression (Koenker

and Bassett, 1978):

[β̂0(τ), β̂1(τ)] = argmin
(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ ), (2.4)
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where ρτ (·) is the check function from quantile regression

ρτ (x) =

τx, if x ≥ 0

(τ − 1)x if x < 0.

Even if the world is not risk-neutral, the model in (2.3) can still be correctly

specified, as is the case for conditional lognormal models (see Section 4.1). When

the model is misspecified, the estimation in (2.4) remains meaningful as QR finds

the best linear approximation to the conditional quantile function (Angrist et al.,

2006).2 Since the risk-neutral quantile itself is a highly non-linear transformation

of state variables, the model can accommodate non-linear dependence between the

physical quantile function and state variables driving the economy. The benefit of

using the risk-neutral quantile function as a regressor is that it does not require the

econometrician to take a stand on the state variables driving the physical distribu-

tion. Furthermore, both Rm,t→N and Q̃t,τ are conditioned on the same information

set, thus avoiding the mismatched information critique of Linn et al. (2018).

In addition, theory often suggests tantalizing links between the tails of the phys-

ical and risk-neutral distribution. Table 1 presents correlations between Qt,τ and

Q̃t,τ for both left and right tails in different asset pricing models. In most models,

these correlations are nearly one, indicating a strong positive relation that can be

modeled by (2.3). Only for τ = 0.3, the correlation is notably lower at 41% in the

Campbell and Cochrane (1999) model and -67% in the Drechsler and Yaron (2011)

model.

In Appendix B.1, I consider non-linear specifications as alternatives to the linear

model in (2.3). Broadly speaking, I find that the linear model outperforms all non-

linear models when predicting the physical quantile function out-of-sample. Based

on this evidence, and the close linear approximation suggested by asset pricing mod-

els, I use the linear specification throughout most of the paper.

Remark 1. An alternative to QR is nonparametric estimation of the SDF as proposed

by Aı̈t-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002).

This method can infer the quantile difference from the estimated SDF but relies on

pooled historical returns, which can be problematic for forward-looking distribution

estimation (Linn et al., 2018). More recently, Linn et al. (2018) and Cuesdeanu

2This result is analogous to OLS, which finds the best linear approximation to the conditional
expectation function, even if the model is misspecified.
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Table 1: Tail correlations (in %) of physical and risk-neutral quantile
function in asset pricing models

Percentile 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95

Lognormal
Campbell and Cochrane (1999) 96.94 94.49 83.61 40.88 86.51 94.25 97.27 98.26
Bansal and Yaron (2004) 99.97 99.97 99.98 99.98 99.99 99.99 99.99 100.00
Disaster
Drechsler and Yaron (2011) 99.90 99.44 94.67 -67.16 96.88 98.75 99.45 99.67
Wachter (2013) 95.40 99.63 99.57 98.98 99.71 99.88 99.94 99.97
Constantinides and Ghosh (2017) 99.86 99.72 99.21 97.58 85.96 94.68 97.32 97.90

Note: This table reports the correlation between Qt,τ and Q̃t,τ in conditional lognormal models and models that embed
a source of conditional disaster risk. The correlations at various percentiles are obtained by simulating 106 draws of the
ergodic distribution of states in each model.

and Jackwerth (2018) proposed an estimator of the SDF that accounts for forward-

looking information. However, this method presents challenges such as non-convex

optimization, the objective function might be undefined due to the small number of

existing risk-neutral moments (see Figure G8), ambiguity in basis function selection,

and the inability to account for shape changes in the SDF leading to incorrect condi-

tional inference. QR, on the other hand, avoids these issues, as shown in more detail

in Section 4.1.

2.2.2 Measures of Fit

Based on the quantile regression (2.4), I consider two measures of fit to evaluate how

well the risk-neutral quantile locally approximates the physical distribution. The

first in-sample measure, R1(τ), is defined as3

R1(τ) := 1−
minb0,b1

∑T
t=1 ρτ (Rm,t→N − b0 − b1Q̃t,τ )

minb0
∑T

t=1 ρτ (Rm,t→N − b0)
. (2.5)

This measure of fit was proposed by Koenker and Machado (1999) and is a clean

substitute for the OLS R2. I also consider an out-of-sample measure of fit

R1
oos(τ) := 1−

∑T
t=w ρτ (Rm,t→N − Q̃t,τ )∑T
t=w ρτ (Rm,t→N −Qt,τ )

, (2.6)

where Qt,τ is the historical rolling quantile of the market return from time t − w +

1 to t, and w is the rolling window length. Notice that (2.6) is a genuine out-

of-sample metric since no parameter estimation is used. In the equity premium

literature, Campbell and Thompson (2008) stress the importance of out-of-sample

predictability; (2.6) is analogous to their out-of-sample R2.

3It is well known that b0 in the denominator of (2.5) equals the in-sample τ -quantile.

11



2.3 Data and Estimation

To estimate the quantile regression in (2.4), I require data on the market return and

the risk-neutral distribution over time. I use overlapping returns on the S&P500

index from WRDS over the period 2003–2021 to represent the market return. I

calculate the market return over a horizon of 30-, 60-, and 90-days. Second, over the

same horizon, I use put and call option prices on the S&P500 on each day t from

OptionMetrics to estimate the risk-neutral quantile function based on the Breeden

and Litzenberger (1978) formula:

F̃t

(
K

St

)
= Rf,t→N

∂

∂K
Putt(K), (2.7)

where Putt(K) denotes the time t price of a European put option on the S&P500

index with stock price St, strike price K and expiration date t+N . This formula is

model-free and only requires a no-arbitrage assumption. Due to the lack of a con-

tinuum of option prices, interpolation of different maturity options and missing data

for option prices far in– and out-of-the money, it is a nontrivial exercise to obtain

accurate estimates of F̃t (and hence Q̃t,τ ) from (2.7). A detailed description of my

approach that overcomes these issues is described in Appendix C.2, which is based

on Filipović et al. (2013).4 Finally, I obtain the risk-free rate from Kenneth French’s

website.5

Table 2 shows the QR estimates of (2.4). The point estimates are close to the

[0, 1] benchmark in the right-tail (τ ≥ 0.7), but not in the left-tail (τ ≤ 0.3).6 Ad-

ditionally, the joint restriction that [β0(τ), β1(τ)] = [0, 1] is rejected for all τ ≤ 0.2,

at all horizons. In contrast, the null hypothesis is never rejected for τ ≥ 0.8. The

fact that the risk-neutral distribution provides a good approximation of the physical

distribution in the right-tail is confirmed by the measures of fit, R1(τ) and R1
oos(τ),

which are also shown in Table 2. Specifically, both in- and out-of-sample, the risk-

neutral quantile fits the physical distribution much better in the right-tail.

Remark 2. The standard errors for the quantile regression in Table 2 are obtained

by the smooth extended tapered block bootstrap (SETBB) of Gregory et al. (2018),

which is robust to heteroscedasticity and weak dependence.7 This robustness is

4This approach uses a kernel density and adds several correction terms to approximate the risk-
neutral density. I follow Barletta and Santucci de Magistris (2018) and use a principal components
step to avoid overfitting in the tails.

5See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#

Research
6Because the risk-neutral quantile function is estimated, there is a concern for attenuation bias

due to measurement error. Unreported simulations show that this bias is very small in a setting
that mimics the empirical application.

7It may seem counterintuitive that the standard errors decrease in the tails, which are generally
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important in the estimation, since I use overlapping returns which creates time de-

pendence in the error term, akin to the overlapping observation problem in OLS

(Hansen and Hodrick, 1980). SETBB also renders an estimate of the covariance

matrix between β̂0(τ) and β̂1(τ), which can be used to test joint restrictions on the

coefficients.8

3 Equity Premium Puzzle and SDF Implications

Building on the estimates in Table 2, this section shows that the conditional equity

premium is driven by disaster risk, and that disaster risk is a pervasive feature of

the data, which poses a new challenge to asset pricing models. I further comment on

two implications of Table 2 that relate to properties of the SDF that have previously

received attention in the literature.

3.1 Equity Premium Puzzle

The results in Table 2 show that the physical distribution is close to risk-neutral

in the right-tail, but not in the left-tail. Investors in the market portfolio thus

get compensated for bearing downside risk, but not upside risk. This result has

important repercussions for explanations of the equity premium puzzle. To see this,

consider the following decomposition of the equity premium9

Et [Rm,t→N ]−Rf,t→N =

∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ

=

∫
¯
τ

0

(
Qt,τ − Q̃t,τ

)
dτ︸ ︷︷ ︸

disaster risk

+

∫ 1

¯
τ

(
Qt,τ − Q̃t,τ

)
dτ, (3.1)

where
¯
τ is a percentile close to zero. The first term on the right-hand side aggregates

the local difference between the risk-neutral and physical quantiles in the left-tail,

which I define as the contribution of disaster risk. The results in Table 2 show

that these differences are the primary determinant for the equity premium, as in the

right-tail we have Qt,τ ≈ Q̃t,τ . The latter finding is consistent with the modeling

assumption in (time-varying) disaster risk models that shocks to the market return

harder to estimate. However, since the regressor Q̃t,τ changes with τ , there is an opposing effect

that can cause the standard errors to decrease in the tails. This happens if Q̃t,τ is more variable in
the tails, akin to the intuition in OLS that more variability in the regressor decreases the standard
error. In the data, Q̃t,τ is much more variable in the tails.

8I use the QregBB function from the eponymous R-package, available on the author’s Github
page: https://rdrr.io/github/gregorkb/QregBB/man/QregBB.html. The only user required input
for this method is the block length in the bootstrap procedure.

9See Appendix A.1 for a derivation.
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Table 2: Risk-neutral quantile regression

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Hit[%] Q̂t,τ > Q̃t,τ [%]

30 days* 0.05 0.43
(0.208)

0.56
(0.223)

0.00 6.28 6.11 -2.67
(0.676)

99.88

0.1 0.45
(0.201)

0.54
(0.209)

0.01 3.45 1.01 -3.56
(1.089)

98.52

0.2 0.69
(0.284)

0.30
(0.290)

0.02 0.55 0.89 -3.73
(1.719)

90.98

0.3 1.02
(0.357)

-0.02
(0.360)

0.00 0.00 2.49 -5.51
(2.147)

99.58

0.4 1.17
(0.237)

-0.16
(0.237)

0.00 0.03 1.75 -7.32
(2.357)

97.25

0.6 -0.45
(0.216)

1.44
(0.213)

0.00 4.62 4.19 -8.05
(2.468)

99.93

0.7 -0.18
(0.162)

1.18
(0.159)

0.03 7.79 7.47 -5.84
(2.220)

99.95

0.8 -0.09
(0.141)

1.09
(0.137)

0.19 12.44 12.50 -3.24
(1.886)

99.95

0.9 0.03
(0.113)

0.97
(0.108)

0.96 20.41 21.88 -0.04
(1.235)

55.85

*(Obs. 4333) 0.95 0.12
(0.120)

0.89
(0.114)

0.57 27.07 31.31 0.27
(0.863)

22.41

60 days** 0.05 0.45
(0.303)

0.54
(0.343)

0.00 3.12 13.14 -3.33
(0.875)

100.00

0.1 0.58
(0.263)

0.41
(0.283)

0.00 1.79 3.50 -5.57
(1.320)

100.00

0.2 0.78
(0.336)

0.21
(0.345)

0.01 0.38 -0.03 -6.60
(2.351)

99.95

0.3 0.93
(0.434)

0.07
(0.438)

0.00 0.01 -0.12 -7.81
(3.012)

99.47

0.4 0.36
(0.325)

0.65
(0.323)

0.02 0.25 2.34 -8.48
(3.439)

99.79

0.6 -0.65
(0.342)

1.64
(0.333)

0.02 5.57 4.60 -7.68
(3.465)

99.77

0.7 -0.31
(0.266)

1.30
(0.256)

0.05 8.41 7.65 -7.34
(3.260)

99.91

0.8 -0.08
(0.183)

1.08
(0.174)

0.07 12.70 12.23 -5.53
(2.683)

100.00

0.9 0.04
(0.147)

0.96
(0.138)

0.58 21.66 22.79 -1.94
(1.707)

92.86

**(Obs. 4312) 0.95 0.04
(0.135)

0.96
(0.126)

0.90 31.07 34.19 0.43
(1.046)

13.73

90 days*** 0.05 0.60
(0.405)

0.37
(0.478)

0.01 2.90 15.63 -2.95
(1.102)

100.00

0.1 0.59
(0.321)

0.40
(0.356)

0.00 3.46 3.84 -6.36
(1.495)

100.00

0.2 0.57
(0.516)

0.43
(0.534)

0.03 0.83 1.93 -7.53
(2.896)

100.00

0.3 0.62
(0.637)

0.39
(0.643)

0.04 0.17 -0.52 -8.42
(3.668)

99.84

0.4 0.42
(0.468)

0.60
(0.463)

0.02 0.22 -1.76 -9.52
(4.199)

99.77

0.6 -0.84
(0.426)

1.82
(0.413)

0.01 6.37 3.81 -11.60
(4.542)

99.98

0.7 -0.46
(0.307)

1.45
(0.293)

0.02 10.45 8.87 -9.43
(4.056)

100.00

0.8 -0.23
(0.204)

1.23
(0.192)

0.10 15.47 16.54 -6.66
(3.189)

100.00

0.9 -0.02
(0.170)

1.02
(0.157)

0.79 23.18 27.92 -1.12
(1.971)

100.00

***(Obs. 4291) 0.95 0.08
(0.153)

0.93
(0.139)

0.86 32.14 39.88 -0.06
(1.366)

52.37

Note: This table reports the QR estimates of (2.4) over the sample period 2003–2021 at different horizons, using overlapping
returns. Standard errors are shown in parentheses and based on SETBB with a block length equal to the prediction horizon.
Wald test denotes the p-value of the joint restriction [β0(τ), β1(τ)] = [0, 1]. R1(τ) denotes the goodness of fit measure (2.5).
R1

oos(τ) is the out-of-sample goodness of fit (2.6), using a rolling window of size 10 times the prediction horizon. Hit refers
to the sample expectation defined in (3.3) and standard errors are reported in parentheses, which are obtained by stationary

bootstrap based on 10,000 bootstrap samples. The last column indicates the time series average of the event that Q̂t,τ > Q̃t,τ ,

where Q̂t,τ = β̂0(τ) + β̂1(τ)Q̃t,τ .

are negative conditional on a disaster occurring (see, e.g., the condition θ < 0 in

Example 2.1). Hence, an asset pricing model seeking to explain the (conditional)

equity premium of the market return must embed a source of disaster risk.

To illustrate the pervasiveness of disaster risk in the data, I consider the Lorenz
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curve associated with the conditional equity premium

Lt(x) :=

∫ x

0

(
Qt,τ − Q̃t,τ

)
dτ

Et [Rm,t→N ]−Rf,t→N

(3.1)
=

∫ x

0

(
Qt,τ − Q̃t,τ

)
dτ∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ

, 0 ≤ x ≤ 1.

The Lorenz curve summarizes the proportion of the equity premium contributed by

the bottom x% of returns, akin to its interpretation in labor economics to summa-

rize wealth inequality. Since Qt,τ is unobserved, I use instead the inferred value,

Q̂t,τ = β̂0(τ) + β̂1(τ)Q̃t,τ , with the estimated parameters coming from the QR esti-

mates in (2.4).

Figure 2a shows the average Lorenz curve in the data, together with the Lorenz

curve implied by various asset pricing models.10 In the data, the Lorenz curve is

quite concave, thus showing that the majority of the equity premium is contributed

by the left-tail. At the same time, my estimation adds nuance to the degree of disas-

ter risk influencing the equity premium. Specifically, while the disaster risk models

of Barro (2009) and Backus et al. (2011) attribute approximately 90% of the equity

premium to the lowest 5% of returns, empirical estimates suggest this proportion is

only around 17%. These findings also deviate substantially from the nonparametric

estimates of Beason and Schreindorfer (2022), who report that 91.5% of the equity

premium is driven by the bottom 5% of returns. Our results differ because I ac-

count for conditioning information, while Beason and Schreindorfer (2022) employ

an unconditional approach. Using unconditional averages can inflate the tails of the

physical distribution (Chabi-Yo et al., 2008), leading to an overestimation of disaster

risk.

On the other hand, the models of Campbell and Cochrane (1999) and Bansal

and Yaron (2004) are even more misspecified since the Lorenz curve in these models

is slightly convex, thus attributing more than 50% of the equity premium to upside

returns. The model of Schreindorfer (2020) matches the Lorenz curve best, even

though it also overestimates the contribution of disaster risk to the equity premium.

I also consider the Gini coefficient derived from the Lorenz curve

Gt = 2

∫ 1

0

Lt(τ) dτ − 1.

By construction, the Gini coefficient is between -1 and 1, and a value closer to 1

indicates that a bigger proportion of the equity premium is coming from the left-tail.

10I thank Beason and Schreindorfer (2022) for making the code to simulate from these models
publicly available.
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Figure 2: Lorenz curve and Gini coefficient of the conditional equity pre-
mium. This figure presents the Lorenz curve and Gini coefficient associated with the conditional
equity premium in both empirical data and asset pricing models. Panel (a) displays the time-
averaged Lorenz curve estimated from 30-day returns (Empirical) alongside Lorenz curves implied
by the unconditional asset pricing models of Barro (2009) (B09), Backus et al. (2011) (BCM11),
and Schreindorfer (2020) (S20), as well as the average Lorenz curve from conditional asset pricing
models by Campbell and Cochrane (1999) (CC99) and Bansal and Yaron (2004) (BY04). Panel
(b) depicts the estimated Gini coefficient over time for different return horizons and is smoothed
using a 30-day rolling window. Panel (c) shows the ergodic distribution of Gini coefficients esti-
mated from 30-day returns (Empirical) and those implied by the conditional asset pricing models of
CC99, BY04, Drechsler and Yaron (2011) (DY11), Wachter (2013) (W13), and Constantinides and
Ghosh (2017) (CG17). Model parameters are calibrated on a monthly frequency, and the ergodic
distribution is derived from 10,000 state draws.

In contrast, a value of 0 suggests that the equity premium is evenly distributed across

the return distribution, while negative values imply that the right-tails contribute

more to the equity premium than the left-tails. Figure 2b shows the time series of

conditional Gini coefficients for the various return horizons. For 30-day returns, the

Gini coefficient mostly hovers between 0.33 and 0.68. At longer horizons, the Gini

coefficients exhibit less variability and typically range between 0.47 to 0.6. These co-

efficients are also countercyclical, peaking during periods associated with economic

downturns, such as the 2008 financial crisis and the Covid-19 crisis. Overall, the Gini

coefficients consistently exhibit strong positive values, highlighting the pervasiveness

16



of conditional disaster risk in the data, which extends beyond crisis periods.

Finally, I analyze the ergodic distribution of Gini coefficients in time-varying as-

set pricing models and compare it to the distribution implied by the data.11 Figure

2c displays these distributions and shows that many asset pricing models have dif-

ficulty in matching the empirical distribution. The conditional lognormal models of

Campbell and Cochrane (1999) and Bansal and Yaron (2004) imply negative Gini

coefficients, with minimal variation among different states, contrary to what the data

indicate. The models of Drechsler and Yaron (2011), Wachter (2013), Constantinides

and Ghosh (2017) all incorporate a source of disaster risk, but they also have diffi-

culty to match the empirics. In particular, the models of Drechsler and Yaron (2011)

and Wachter (2013) embed too little disaster risk, while the model of Constantinides

and Ghosh (2017) overestimates the impact of disaster risk.

3.2 Driver of Disaster Risk Premia: Insurance or Beliefs?

Disaster risk premia have two components: an insurance effect and a forward-looking

beliefs effect (under rational expectations). To see this, consider again the short

position in a derivative security that pays one dollar if the market return is below

a threshold, denoted by x, in the left-tail. The excess return on such an investment

can be interpreted as

Ẽt [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
price of insurance

−Et [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
forward looking belief

= F̃t(x)− Ft(x).

During a crisis, the price of this insurance security tends to rise. This effect can

occur in the disaster risk model (Example 2.1), if risk aversion increases when a

disaster hits, leading to an increase in F̃t(x) and a subsequent decrease in Q̃t,τ . Si-

multaneously, investors may believe that the actual probability of a disaster increases

during a crisis. This belief drives up Ft(x) and, consequently, pushes down Qt,τ .

Building on this discussion, it is not immediately clear what the net effect is on

disaster risk premia (Qt,τ − Q̃t,τ ), as both Qt,τ and Q̃t,τ tend to decrease during

periods of heightened market uncertainty. Figure 3a illustrates this effect for 30-day

returns and τ = 0.05. Notably, during the global financial crisis and Covid-19 crisis,

both the physical and risk-neutral quantile functions exhibit significant drops.

To shed light on the net effect on disaster risk premia during crises, Figure 3b

11In the model, I obtain the distribution of Gini coefficients from the state distribution. In the
data, I rely on the time series average. If the data are generated by the model and the system is
ergodic, Birkhoff’s theorem implies that the state and time averages are equal almost everywhere.
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displays the evolution of disaster risk premia over time. The most significant change

occurs during the peak of the global financial crisis and the Covid-19 crisis. In these

turbulent periods, disaster risk premia consistently rise, suggesting that the insur-

ance effect is more substantial than the forward-looking beliefs effect.12 Because of

these large increases, disaster risk is a more important driver of the equity premium,

which clarifies the countercyclical Gini coefficients in Figure 2b.

The downward fluctuations in the risk-neutral quantile function can be particu-

larly pronounced, plummeting to as low as 63% during crisis periods. In contrast,

the physical quantile function only drops to 78%, suggesting that a monthly loss of

22% or more had a 5% probability. To put this in perspective, this probability is

14 times higher than the estimate obtained from historical monthly S&P500 returns

(from 1926 to 2021). This calculation shows that historical estimates can diverge

significantly from forward-looking beliefs. Furthermore, the time fluctuations in the

physical quantile function lend empirical support to the notion of time-varying dis-

aster risk, as proposed in various models such as Gabaix (2012), Wachter (2013),

Constantinides and Ghosh (2017), Isoré and Szczerbowicz (2017), Farhi and Gourio

(2018) and Seo and Wachter (2019).
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Figure 3: Disaster risk premia for 30-day returns at the 5th percentile.
Panel (a) shows the physical and risk-neutral quantile functions over time at τ = 0.05. The physical
quantile function is estimated from the quantile regression in (2.4). Panel (b) shows the associated

disaster risk premium, Qt,τ − Q̃t,τ . Both panels are smoothed using a 30-day moving window. The
two shaded bars denote the Great Recession period (Dec 2007 – June 2009) and Covid-19 crisis
(Feb 2020 – April 2020).

12I find similar results for 60- and 90-day returns.
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3.3 Predicting the Equity Premium

The previous results establish that, in times of heightened market uncertainty, the

equity premium is driven more by disaster risk. This observation suggests a strong

link between Et [Rm,t→N ]−Rf,t→N and the tail of the risk-neutral distribution, which

motivates the predictive regression

Rm,t→N −Rf,t→N = β0 + β1Q̃t,τ + εt→T , (3.2)

where Q̃t,τ is evaluated at τ = 0.05.

Table 3 shows the results at several return horizons. In all cases, the coefficient

is negative, consistent with previous findings that the equity premium increases un-

der market uncertainty. Following Welch and Goyal (2008), the table also reports

the out-of-sample R2, denoted by R2
oos, which compares the predictions of (3.2) to a

rolling average of excess returns. Precisely, I estimate (3.2) using the sub-sample cov-

ering 2003–2012, and fix the estimated parameters to predict excess returns over the

out-of-sample period 2013–2021. Encouragingly, R2
oos is always positive and statis-

tically significant according to the Diebold and Mariano (1995) test, thus suggesting

that the left-tail of the risk-neutral quantile function outperforms the historical mean

benchmark. These values are also substantially higher compared to the R2
oos reported

by Welch and Goyal (2008) using various valuation ratios, or Martin (2017) using

SVIX.13

Figure 4 shows the estimated equity premium over time for 30- and 60-day re-

turns. The panels are annualized to make them comparable. Both panels display

considerable variation in the equity premium over time and large values during the

global financial crisis and Covid-19 crisis. In these periods, Figure 4a suggests that

the annualized equity premium peaks at 58%, which is substantial relative to more

conventional estimates based on dividend-price ratios. On the other hand, the esti-

mates around the 2008 financial crisis are in line with Martin (2017, Figure IV).

3.4 Pricing Kernel Monotonicity and Stochastic Dominance

Besides the equity premium puzzle, the QR estimates in Table 2 also provide insights

into other asset pricing anomalies, such as pricing kernel monotonicity. Pricing ker-

nel monotonicity refers to the property that Mt→N (Rm,t→N ) := E [Mt→N |Rm,t→N ]

is a decreasing function of the market return. Asset pricing models that link the

SDF to the marginal rate of substitution imply that the pricing kernel is indeed a

13The latter is not directly comparable however, since SVIX does not require parameter estima-
tion.
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Table 3: OLS estimates of conditional equity premium

Full sample Sub-sample

Horizon β̂0 β̂1 R2[%] Obs R2[%] R2
oos[%] p-value DM

30 days 0.13
(0.089)

-0.14
(0.096)

1.79 4333 10.44 1.82 0.00

60 days 0.17
(0.120)

-0.18
(0.137)

2.74 4312 18.16 3.30 0.00

90 days 0.20
(0.150)

-0.22
(0.178)

3.58 4291 26.67 4.20 0.00

Period 2003–2021 2013–2021

Note: This table reports the OLS estimates of (3.2) for 30-, 60- and 90-day returns. Stan-
dard errors are shown in parentheses and calculated using stationary bootstrap, with an
average block length equal to the return horizon. R2

oos denotes the out-of-sample R2 using
the historical rolling mean of excess returns. The window length is equal to 5 years. p-value
DM denotes the p-value of the Diebold and Mariano (1995) test that the risk-neutral quan-
tile exhibits equal out-of-sample forecasting accuracy as the rolling mean. The “Period” row
indicates the specific time periods used for estimation.
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Figure 4: Estimated equity premium. This figure shows the estimated equity premium
based on (3.2) for 30-day returns (Panel 4a) and 60-day returns (Panel 4b). In both cases, the
equity premium is converted to annual units. The two shaded bars signify the Great Recession
period (Dec 2007 – June 2009) and Covid-19 crisis (Feb 2020 – April 2020).

decreasing function. Empirically, there is suggestive evidence that the pricing kernel

is not monotonic, which is puzzling as it contradicts that a representative investor is

risk-averse (see Aı̈t-Sahalia and Lo (1998), Jackwerth (2000), Rosenberg and Engle

(2002), Bakshi et al. (2010), Beare and Schmidt (2016) and Cuesdeanu and Jackwerth

(2018)). However, a formal statistical test that can detect violations of monotonicity

is challenging as one needs uniform confidence bands for the estimated SDF, which

requires tools from empirical process theory (see, e.g., Beare and Schmidt (2016)).

I consider a different approach based on stochastic dominance. Proposition A.1 in

the Appendix shows that pricing kernel monotonicity implies that the physical distri-
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bution is first-order stochastic dominant (FOSD) over the risk-neutral distribution,

i.e., Ft(x) ≤ F̃t(x) for all x. The latter condition can be rephrased as Ft(Q̃t,τ ) ≤ τ

for all τ ∈ (0, 1). A violation of stochastic dominance, and hence pricing kernel

monotonicity, is thus implied if there is statistical evidence that Ft(Q̃t,τ ) > τ for a

single τ . To investigate this possibility, let14

Hitt→N = 1

(
Rm,t→N < Q̃t,τ

)
− τ,

Hit =
1

T

T∑
t=1

Hitt→N . (3.3)

Hence, Hit provides an estimate of E(Ft(Q̃t,τ )−τ) which ought to be negative for all

τ under FOSD.15 The “Hit” column in Table 2 reports the value of (3.3), which is

positive for τ = 0.95 at the 30- and 60-day horizon. However, these estimates are not

significant at the conventional levels and a violation of FOSD cannot be concluded.

Since Ft(x) ≤ F̃t(x) if and only if Qt,τ > Q̃t,τ , it follows that violations of stochas-

tic dominance can also be identified directly from the quantile function. Based on the

QR estimates (2.4), consider the predicted quantile function Q̂t,τ = β̂0(τ)+β̂1(τ)Q̃t,τ .

The last column in Table 2 displays the time series average of instances where

Q̂t,τ > Q̃t,τ . Broadly speaking, for all horizons, violations of stochastic dominance

are infrequent, except far in the right-tail. At τ = 0.95, stochastic dominance is fre-

quently violated, consistent with a non-monotonic pricing kernel.16 In representative

agent models, this result is puzzling as it contradicts the assumption of decreasing

marginal utility of wealth (see Proposition A.2 in the Appendix).

3.5 Belief Recovery

A recent literature asks to what extent Arrow prices can be used to learn about

the underlying probability distribution of the data, or the subjective probabilities

used by investors. Since Arrow prices are confounded by risk aversion, it is impos-

sible to identify the underlying probabilities from Arrow prices alone, unless one

imposes additional restrictions (Ross, 2015; Borovička et al., 2016; Bakshi et al.,

2018; Qin et al., 2018; Jackwerth and Menner, 2020). For example, Ross (2015) uses

the Perron-Frobenius theorem to recover investors’ beliefs, which agrees with the

underlying physical measure under rational expectations.

14The Hitt→N function was first introduced by Engle and Manganelli (2004) in a different context.
15Hit also yields another measure of the difference between Ft and F̃t. Consistent with the

quantile regression estimates, the Hit statistic shows that Ft and F̃t are similar in the right-tail,
but different in the left-tail.

16The most significant violations occur during two major financial crises: the 2008 financial crisis
and the 2020 Covid-19 crisis.
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Complementary to this insight, the QR estimates in Table 2 show that the right-

tail of the physical distribution can approximately be recovered from the right-tail

of the risk-neutral distribution, which aligns with the investor’s belief under rational

expectations. In contrast, the left-tail of the physical distribution cannot be recovered

even though the risk-neutral quantile serves as a conservative lower bound. In Section

6, I propose a more stringent lower bound to recover the left-tail of the physical

distribution as well from option data.

4 QR and Robust Estimation of Disaster Risk

Section 3.1 demonstrated that the conditional lognormal assumption is inconsistent

with the observed disaster risk premia in the market. At the same time, Figure

2a showed that disaster risk models tend to overestimate the magnitude of disaster

risk in the data. These conclusions heavily rely on the accuracy of QR in providing

estimates of the physical quantile function.

In this section, I compare QR to nonparametric SDF methods for estimating dis-

aster risk. Foreshadowing the results, I show that QR is more robust and argue that

the SDF approach tends to overestimate disaster risk. These results help explain

the current disagreement about the extent of disaster risk in the data, and provide

further support for QR to estimate this risk.

4.1 QR in the Conditional Lognormal Model

To convey the intuition, it is convenient to work with a discretized version of the

Black and Scholes (1973) model. There is a riskless asset that offers a certain return,

Rf,t→N ≡ Rf = erfN , and a risky asset with return

Rm,t→N = exp([µt −
1

2
σ2
t ]N + σt

√
NZt+N ), (4.1)

where µt represents the conditional mean return, σt is the conditional volatility, and

Zt+N is a random shock that follows a standard normal distribution. In this setup,

Mt→N := exp(−[rf + ξ2t /2]N − ξt
√
NZt+N ) is a valid SDF with conditional Sharpe

ratio

ξt =
µt − rf

σt
. (4.2)

Hence, under risk-neutral measure, the conditional distribution of Rm,t→N is

given by

log R̃m,t→N ∼ N
(
(rf − 1

2
σ2
t )N, σ2

tN

)
. (4.3)
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Notice that σt is implicitly observed from the risk-neutral distribution, but µt is

unobserved with mean µ := E [µt] and variance σ2
µ := Var(µt) < ∞. The following

result characterizes the limiting behavior of the QR estimates (2.4) in the lognormal

model when the variance of the equity premium is small. A convenient way to model

this is by means of a drifting sequence σT
µ → 0 as T → ∞, which captures the

intuition that the volatility of the equity premium is much smaller than the return

volatility.

Proposition 4.1 (QR in Lognormal Model). In the lognormal model described above

with return observations {Rm,t→N}Tt=1 and risk-neutral quantile functions {Q̃t,τ}Tt=1,

the following hold.

(i) Suppose that conditional on time t, µt follows a normal distribution µt ∼
N (µ, σ2

µ), independent of σt. Let Qt,τ (σt, σµ) denote the physical quantile func-

tion of Rm,t→N conditional on σt only. Then, for all τ ∈ I := a closed subset

of [ε, 1− ε] for 0 < ε < 1, the physical quantile function satisfies

Qt,τ (σt, σµ) = exp

[
(µ− 1

2
σ2
t )N +

(√
σ2
µN

2 + σ2
tN
)
Φ−1(τ)

]
= Q̃t,τe

(µ−rf )N (1 +O (σµN)) ,

where Φ−1(τ) denotes the quantile function of the standard normal distribution.

(ii) Consider a drifting sequence for σµ, denoted by σT
µ → 0 as T → ∞. Then, un-

der Assumption A.4 in the Appendix, the estimated parameters in the quantile

regression

[
β̂0(σ

T
µ ; τ), β̂1(σ

T
µ ; τ)

]
= argmin

(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ ),

satisfy [
β̂0(σ

T
µ ; τ), β̂1(σ

T
µ ; τ)

]
=
[
0, e(µ−rf )N

]
+ op(1). (4.4)

Furthermore, the quantile forecast based on the QR estimates satisfies

β̂0(σ
T
µ ; τ) + β̂1(σ

T
µ ; τ)Q̃t,τ = Qt,τ + op(1). (4.5)

Proof. See Appendix A.3. ■

Proposition 4.1(i) shows that the risk-neutral quantile function is a good predic-

tor of Qt,τ (σt;σµ) when σµ is small, and the difference between the two functions

is governed by the unconditional equity premium e(µ−rf )N . In this case, Proposi-

tion 4.1(ii) suggests that the QR estimates are almost constant across τ and close
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to [0, e(µ−rf )N ]. This result obtains without assuming that µt follows a normal dis-

tribution. The wedge between Qt,τ (σt;σµ) and Q̃t,τ not explained by the equity

premium can be attributed to uncertainty about µt, which increases the variance of

the physical distribution. The assumption that σµ is small relative to σt accords

with empirical findings of Martin (2017, Table I), who finds that 2.4% ≤ σµ ≤ 4.6%,

whereas σt hovers around 20%. Unreported simulations show that the approximation

in (4.4) obtains closely when the model is calibrated to match these stylized facts.

As a result, the physical quantile forecast based on the QR estimates in (4.5) is also

highly accurate.

4.2 QR versus Nonparametric SDF Estimation

Because of the availability of closed-form expressions in the lognormal model, it is

instructive to compare the QR approach to alternative methods for estimating the

physical distribution. Since the SDF represents the Radon–Nikodym derivative of

the risk-neutral and physical measures, it is possible to obtain the physical quantile

function from the estimated SDF. There is a substantial literature on how to esti-

mate the SDF in a forward-looking manner (see Remark 1). For this comparison, I

consider the state-of-the-art SDF estimator proposed by Cuesdeanu and Jackwerth

(2018) (CJ).

After some algebra, the SDF in the Black-Scholes model can be expressed as a

function of the market return:

Mt→N = exp

(
−N

2

[
µt + rf +

r2f − µ2
t

σ2
t

])
(Rm,t→N )−ξt/σt , (4.6)

where ξt is the conditional Sharpe ratio (4.2). CJ project the unobserved SDF in

(4.6) on the market return and estimate an SDF of the form

M̂t→N = Ctg(Rm,t→N ),

where Ct is a time-varying constant, and g(·) is an unknown function that can be

estimated by choosing a sieve basis. Since g(·) is time-homogeneous, it is evident

that changes in the shape of the true SDF in (4.6) are not captured by the estimated

SDF. Specifically, in times when the Sharpe ratio is high, the physical and risk-

neutral measures exhibit more distinct differences, as the true SDF becomes steeper.

Because the estimated SDF does not account for these shape changes, it leads to a

severe underestimation of the physical quantile function in the left-tail. Proposition

4.1 demonstrates that the QR approach does not suffer from this limitation.
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To illustrate this discussion, I simulate returns from the lognormal model and

estimate the physical quantile function at the 5th percentile using QR and the SDF

estimate of CJ. Since the conditional (physical) quantile function is known analyt-

ically in the lognormal model, I evaluate the forecast accuracy using the quantile

error ratio, Q̂t,τ/Qt,τ , where Q̂t,τ is the predicted physical quantile based on QR or

the SDF estimate. Panel 5a displays the empirical density of error ratios obtained

by simulating 1,000 returns. In line with Proposition 4.1(ii), the error ratio corre-

sponding to QR is symmetric and closely centered around one. In contrast, when

the physical quantile is inferred from the estimated SDF, the error density is biased

and exhibits fat tails since the estimated SDF cannot change shape. Consequently,

in periods of high disaster risk premia, the CJ method severely underestimates Qt,τ .

Panel 5b presents the histogram of error ratios conditioned on the 30 largest

values of Qt,τ − Q̃t,τ , clearly illustrating the downward bias in the SDF method.

On average, the predicted physical quantile is 7% lower than its actual value when

disaster risk premia are high. The QR approach is less affected by this bias because

it can capture changes in the shape of the SDF. The computational benefits of QR

are also notable, as the computation of the physical quantile forecast takes less than

a second. On the other hand, the SDF method requires more than 20 minutes to

complete the same task.17

The bottom panels of Figure 5 further illustrate the difference between QR and CJ

using the 30-day return data from Section 2.3, particularly during the 2008 financial

crisis and the Covid-19 crisis. At the height of both crises, both methods predict

increases in disaster risk premia as Q̂t,τ − Q̃t,τ rises significantly. As mentioned

earlier, the SDF approach implies that disaster risk premia increase less relative to

the QR approach, as the shape of the SDF remains constant over time. However, it is

worth noting that while the QR approach performs well when returns are conditional

lognormal, Appendix B.2 demonstrates that the quantile forecasts based on QR

contradict (4.5), casting further doubt on the validity of the conditional lognormal

assumption in the data.

17Moreover, the optimization problem required to implement the sieve estimation did not con-
verge, as the maximum number of iterations were exceeded. This problem occurs due to the large
number of parameters to estimate, and because the optimization problem is not convex (see Remark
1).
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Figure 5: Disaster risk premia at the 5th percentile. Panel (a) shows the quantile

error ratio, Q̂t,τ/Qt,τ , in a conditional Black and Scholes (1973) model for τ = 0.05, where Q̂t,τ

is the predicted physical quantile based on QR or the SDF estimate of CJ. Volatility is generated
according to an AR(1)-model with mean value 0.2, standard deviation 0.03 and a persistency of
0.9. The mean of the physical distribution follows µt ∼ N (0.07, 0.022), the risk-free rate equals
rf = 0.01, the time horizon is one-year, and the number of observations is 1,000. Panel (b) shows

the histogram of error ratios conditioned the 30 events for which Qt,τ − Q̃t,τ is maximal. The
bottom panels illustrate the difference between the predicted physical quantile obtained from QR,
and the predicted quantile coming from the SDF estimate of CJ, during the global financial crisis
and the Covid-19 crisis. Both estimates are based on 30-day returns, using the data from Section
2.3. The bottom panels are smoothed using a 30-day rolling window.

5 Disaster Risk and SDF Volatility

Section 3.1 demonstrated that the physical and risk-neutral distributions locally differ

most in the left-tail. In this section, I show that these local differences imply that

the SDF must be highly volatile; an observation that is closely related to the Hansen

and Jagannathan (1991) bound. Furthermore, I use this insight to argue that the

left-tail of the physical distribution cannot be too predictable, which clarifies the low

explanatory power in Table 2.
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5.1 A Bound on the SDF Volatility

For ease of notation, I define ϕt(τ) := Ft(Q̃t,τ ), which can be interpreted as the

ordinal dominance curve of the measures Pt and P̃t (Hsieh and Turnbull, 1996).

Furthermore, let

ℵ+
t := {Mt→N : Mt→N ≥ 0 and Et [Mt→NRm,t→N ] = 1},

which is the space of all nonnegative conditional SDFs. The volatility bound on the

SDF can now be stated as follows.

Proposition 5.1 (Distribution bound). Assume no-arbitrage, then for any Mt→N ∈
ℵ+
t , we have

σt(Mt→N )

Et [Mt→N ]
≥ |τ − ϕt(τ)|√

ϕt(τ)(1− ϕt(τ))
∀τ ∈ (0, 1). (5.1)

If a risk-free asset exists, then Et [Mt→N ] = 1/Rf,t→N and (5.1) simplifies to

σt(Mt→N ) ≥ 1

Rf,t→N

|τ − ϕt(τ)|√
ϕt(τ)(1− ϕt(τ))

∀τ ∈ (0, 1).

The bound can be further rewritten in terms of the conditional CDFs only

σt(Mt→N ) =
1

Rf,t→N

∣∣∣F̃t(x)− Ft(x)
∣∣∣

Ft(x)(1− Ft(x))
∀x ∈ (0,∞). (5.2)

Proof. See Appendix A.4. ■

If Pt = P̃t, agents are risk-neutral and the dominance curve evaluates to ϕt(τ) = τ .

In that case the distribution bound degenerates to zero. Proposition 5.1 makes pre-

cise the sense in which any local difference between the physical and risk-neutral

distribution leads to a volatile SDF. Compare this to the classical Hansen and Ja-

gannathan (1991) (HJ) bound:

σt(Mt→N ) ≥ 1

Rf,t→N

|Et [Rm,t→N ]−Rf,t→N |
σt(Rm,t→N )

. (5.3)

The lower bound in (5.3) shows that any excess return leads to a volatile SDF. Essen-

tially, (5.3) uses three sources of information: (i) the mean of the physical distribution

(ii) the mean of the risk-neutral distribution (iii) the variance of the physical distri-

bution. The lower bound in (5.3) is also a global measure of distance between Pt and

P̃t, since the mean and volatility are averages across the whole distribution.

In contrast, the bound in (5.2) compares the physical and risk-neutral distribution

at every point x, which is a local measure of distance between Pt and P̃t. To clarify
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this local interpretation, consider the following decomposition of the (scaled) equity

premium

Et [Rm,t→N ]−Rf,t→N

Rf,t→N
= −COVt[Rm,t→N ,Mt→N ]

=

∫ ∞

0

COVt[1 (Rm,t→N ≤ x) ,Mt→N ] dx, (5.4)

where the first equation follows since the SDF prices the market return (2.1), and the

second equation is a consequence of Hoeffding’s identity (see Lemma A.5.). Equation

(5.4) shows that COVt[1 (Rm,t→N ≤ x) ,Mt→N ] locally measures the dependence be-

tween the SDF and market return. In other words, it quantifies how the SDF’s vari-

ability relates to the market return’s variability at different quantiles.

To explain the equity premium and disaster risk premia, the SDF must exhibit

sufficient variability. Since the distribution bound can be derived from applying the

Cauchy-Schwarz inequality to COVt[1 (Rm,t→N ≤ x) ,Mt→N ], it is expected to yield

sharper bounds on the SDF volatility than the HJ bound if, for example, there is

high tail dependence between the SDF and market return such as in the disaster risk

model.18

5.2 Quantile Predictability in the Left-Tail

The bound presented in Proposition 5.1 sheds light on the seemingly “low” explana-

tory power observed in the left-tail quantile regressions in Table 2. For tractability,

it is more convenient to show this for CDFs instead of quantile functions, but the

intuition remains the same. Specifically, suppose one could predict Ft(x) at some

x in the left-tail, then this prediction can be exploited by going short in an asset

that pays 1 (Rm,t→N ≤ x). The profit and risk associated to this investment are,

respectively

1

Rf,t→N

(
Ẽt [1 (Rm,t→N ≤ x)]− Et [1 (Rm,t→N ≤ x)]

)
=

1

Rf,t→N

(
F̃t(x)− Ft(x)

)
, (5.5)

σt(1 (Rm,t→N ≤ x)) =
√
Ft(x)(1− Ft(x)).

Although such binary state payoffs do not exist in reality, they can be replicated

closely by a portfolio of put options. In consequence, high predictability of Ft(x)

in the left-tail would render too good a Sharpe ratio; a near-arbitrage opportunity.

18See McNeil et al. (2015, Chapter 7.2.4) for a formal definition of tail dependence.
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Following the reasoning in Ross (2005, Chapter 5), a crude upper bound on the SDF

volatility imposes limitations on the degree of predictability in the left-tail by the

distribution bound in Proposition 5.1. This argument breaks down in the right-tail

since (5.5) is roughly zero, and high predictability would not imply counterfactually

high SDF volatility.

5.3 Distribution Bound in Asset Pricing Models

The estimated Gini coefficients in Section 3.1 demonstrate that conditional disaster

risk is a pervasive feature of the data. This section complements those findings using

the unconditional version of the distribution bound in Proposition 5.1:

σ(M)

E [M ]
≥ τ − ϕ(τ)√

ϕ(τ)(1− ϕ(τ))
, (5.6)

where σ(M) represents the unconditional SDF volatility, and ϕ(τ) = F (Q̃τ ). In this

context, F (·) denotes the unconditional physical CDF, and Q̃τ is the unconditional

risk-neutral quantile function of the market return. The main benefit of using uncon-

ditional distributions is that they can be estimated without running the risk-neutral

quantile regressions. Moreover, the bound in (5.6) only requires the estimation of

distribution functions, whereas existing approaches typically use unconditional den-

sity functions to estimate disaster risk (see, e.g. Beason and Schreindorfer (2022)).

The subsequent examples demonstrate that the HJ bound is always stronger

than the distribution bound in models that do not embed a source of disaster risk.

In contrast, models that incorporate disaster risk can generate distribution bounds

that exceed the HJ bound in the left-tail. Since I use unconditional distributions,

the time subscripts will be omitted from the notation.

Example 5.1 (CAPM). The Capital Asset Pricing Model (CAPM) specifies the

SDF as

M = α− βRm,

where Rm denotes the return on the market portfolio. In this case M /∈ ℵ+, since the

SDF can become negative. However, this probability is very small over short time

horizons or we can think of M as an approximation to M∗ := max(0,M) ∈ ℵ+. Since

the HJ bound is derived by applying the Cauchy-Schwarz inequality to COV(Rm,M),

the inequality binds ifM is a linear combination of Rm. Hence, under CAPM, the HJ

bound is (weakly) stronger than the distribution bound regardless of the distribution

of Rm.

Example 5.2 (Joint normality). Suppose that M and Rm are jointly normally

distributed and denote the mean and variance of Rm by µR and σ2
R respectively.
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The normality assumption violates no-arbitrage since M can be negative, but could

be defended as an approximation over short time horizons when the variance is small

(see Example 5.3). In Appendix A.5, I prove that∣∣∣COV
(
1

(
Rm ≤ Q̃τ

)
,M
)∣∣∣ = fR(Q̃τ ) |COV(Rm,M)| , (5.7)

where fR(·) is the marginal density of Rm.19 This identity gives an explicit expression

for the weighting factor in Hoeffding’s identity (5.4). In Appendix A.5, I also derive

an explicit expression for the relative efficiency between the distribution and HJ

bound, defined by

HJ bound

distribution bound
=

√
ϕ(τ)(1− ϕ(τ))

σRfR(Q̃τ )
. (5.8)

To see that the HJ bound is always stronger than the distribution bound, minimize

(5.8) with respect to τ . Appendix A.6 shows that the minimizer τ∗ satisfies Q̃τ∗ =

µR. For this choice, ϕ(τ∗) = P(Rm ≤ Q̃τ∗) = 1/2 and fR(Q̃τ∗) = 1/
√

2πσ2
R.

Therefore, (5.8) can be bounded by√
ϕ(τ)(1− ϕ(τ))

σRf(Q̃τ )
≥

√
2π

2
≈ 1.25.

Hence, the HJ bound is always stronger in a model where the SDF and market return

are jointly normal.

Example 5.3 (Joint lognormality). Let ZR and ZM be standard normal random

variables with correlation ρ and consider the specification

Rm = e(µR−σ2
R
2 )N+σR

√
NZR

M = e−(rf+
σ2
M
2 )N+σM

√
NZM ,

where N governs the time scale in annual units. Simple algebra shows that the

no-arbitrage condition, E [MRm] = 1, is satisfied when µR − rf = −ρσRσM . It is

difficult to find an analytical solution for the relative efficiency between the HJ and

distribution bound in this case, but linearization leads to a closed form expression

which is quite accurate in simulations. The details are described in Appendix A.7,

where I show that

min
τ∈(0,1)

HJ bound

distribution bound
≈ 1

2

√
2πσ2

RN

exp(σ2
RN)− 1

. (5.9)

This expression is independent of µR. An application of l’Hôspital’s rule reveals that

19Notice that this is the marginal density under physical measure P.
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the relative efficiency converges to
√
2π/2 if N → 0+.20 The ratio in (5.9) is less than

1 if σR ≥ 0.92 and N = 1. Since the annualized market return volatility is about

16%, the HJ bound is stronger than the distribution bound under any reasonable

parameterization if the SDF and market return are lognormal.

Example 2.1 (Continued). The disaster risk model discussed in Section 2.1 is cali-

brated according to the results in Backus et al. (2011, Table II). The market return

in this model is considered as a levered claim on consumption growth, i.e. an asset

that pays dividends proportional to Gλ
t→N . Here λ governs the variability of the

claim to equity. I convert the model implied volatility bounds to monthly units, to

facilitate the comparison with the empirical bounds obtained in Section 5.5.

The distribution bound, HJ bound and SDF volatility are depicted in Panels 6a

(without jumps) and 6b (with jumps). Consistent with Example 5.3, the distribution

bound in the model without jumps never exceeds the HJ bound because both the

market return and SDF follow lognormal distributions. The distribution bound with

jumps has a sharp peak at τ = 0.037, after which it steadily decreases. Interestingly,

there is a range of τ values for which the distribution bound is stronger than the HJ

bound.21 This result can be understood from the physical and risk-neutral quantile

functions in Figure 1b. The risk-neutral quantile function displays a heavy left-

tail, owing to the implied disaster risk embedded in the SDF. Consequently, it is

extremely profitable to sell digital put options which pay out in case of a disaster.

These put options must have high Sharpe ratios as their prices are high (insurance

against disaster risk), but the actual probability of a disaster event occurring is low

enough that the risk associated with selling such insurance is limited.

5.4 Data and Empirical Estimation of the Distribution Bound

To further illustrate the presence of disaster risk in the data, I estimate the distribu-

tion bound (5.1) empirically, using the same 30-day S&P500 returns as discussed in

Section 2.3. However, in this case, I use non-overlapping returns that cover the pe-

riod 1996–2021.22 These returns are sampled at the middle of each month, resulting

in a total of 312 observations. Over this period, the Sharpe ratio is 13%, and the HJ

bound therefore implies that the monthly SDF is quite volatile.

20This is the same relative efficiency in Example 5.2, which is unsurprising as the linearization
becomes exact in the limit as N → 0+.

21In Appendix A.8, I show that the distribution bound can also exceed the HJ bound when
returns follow the Pareto distribution.

22I use non-overlapping returns in this section to facilitate testing and to make the results com-
parable to other nonparametric bounds, which are typically estimated based on non-overlapping
returns (see e.g. Liu (2021)).
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(a) Without jumps (b) With jumps

Figure 6: HJ and distribution bound in disaster risk model without and
with jumps. Panels (a) and (b) show the HJ and distribution bound for the disaster risk
model (Example 2.1) without and with jumps, respectively. The bounds and true SDF volatility
are reported in monthly units. Parameters are calibrated according to Backus et al. (2011, Table
II).

The distribution bound consists of three unknowns that need to be estimated:

(i) the physical distribution (F ); (ii) the risk-neutral quantile function (Q̃τ ), and;

(iii) the risk-free rate (Rf ). To estimate the unconditional risk-free rate, denoted by

R̂f , I rely on the historical average of monthly interest rates. Next, to obtain an

estimate of the physical distribution, I employ a kernel (CDF) estimator, given by:

F̂ (x) :=
1

T

T∑
t=1

Φ

(
x−Rm,t→N

h

)
, (5.10)

where Φ(·) is the Epanechnikov kernel and h is the bandwidth determined by cross-

validation. This choice of estimator ensures that the distribution bound is a smooth

function of τ , which reduces the impact of outliers relative to the discontinuous em-

pirical CDF.

Finally, I apply the procedure outlined in Section 2.3 to estimate F̃t (the con-

ditional risk-neutral CDF). Subsequently, I average the conditional distributions to

estimate the unconditional CDF:

̂̃
F (x) :=

1

T

T∑
t=1

F̃t(x).

Under appropriate assumptions about the distribution of returns,
̂̃
F converges to F̃

as T → ∞. An estimate of the unconditional risk-neutral quantile function can then

be obtained from ̂̃
Q(τ) := inf

{
x ∈ R : τ ≤ ̂̃

F (x)

}
. (5.11)
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Finally, based on the physical CDF (5.10) and risk-neutral quantile function (5.11),

I estimate the distribution bound by

θ̂(τ) :=

∣∣∣τ − ϕ̂(τ)
∣∣∣√

ϕ̂(τ)(1− ϕ̂(τ))R̂f

, τ ∈ [ε, 1− ε] ⊆ (0, 1), (5.12)

where ϕ̂(τ) := F̂ (
̂̃
Q(τ)) is the estimated ordinal dominance curve and ε is a small

positive number.

5.5 Unconditional Evidence of Disaster Risk

Figure 7a illustrates the estimated physical and risk-neutral measures, which differ

most in the left-tail. The distribution bound shows that this difference leads to a

volatile SDF, which is shown in Figure 7b. The lower bound on the SDF volatility

implied by the distribution bound is much stronger than the HJ bound in the left-

tail. This finding aligns with empirical evidence documenting that high Sharpe ratios

can be attained by selling out-of-the money put options (see Broadie et al. (2009)

and the references therein). The supremum of the distribution bound occurs around

the 5th percentile, implying that the monthly SDF volatility must exceed 31%. This

value is more than twice the level indicated by the sample HJ bound. Moreover, the

shape of the distribution bound is quite similar to the distribution bound implied by

the disaster risk model in Figure 6b.23

(a) (b)

Figure 7: Physical/risk-neutral CDF and distribution bound for monthly
S&P500 returns. Panel (a) shows the unconditional phyisical and risk-neutral CDF for
monthly S&P500 returns, over the period 1996-2021. Panel (b) shows the distribution bound as
function of τ , together with the HJ bound.

23The non-monotonicity in the right-tail of the distribution bound occurs because F̃ (x) > F (x),
for x large enough. That is, the physical distribution does not first-order stochastically dominates
the risk-neutral distribution. This result is consistent with the positive Hit estimates in Table 2.
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The graphical evidence suggests that the distribution bound renders a stronger

bound on the SDF volatility than the HJ bound. To test this hypothesis more for-

mally, I fix a priori the probability level at 0.037 (τ = 0.037), which renders the

sharpest bound on the SDF volatility in the disaster risk model (Example 2.1). At

this probability level, the distribution bound is 26% in the data, which is roughly

double the level implied by the HJ bound.

To see whether this difference is statistically significant, I consider the following

test statistic

T := θ̂(0.037)−

∣∣∣R̄m − R̂f

∣∣∣
σ̂R̂f

. (5.13)

The first term on the right denotes the estimated distribution bound (5.12) evaluated

at the 3.7th percentile, using the entire time series of returns {Rm,t→N}. The second
term denotes the estimated HJ bound, using R̄m and σ̂ as the respective sample

mean and standard deviation of {Rm,t→N}. A value of T > 0 indicates that the

distribution bound is stronger than the HJ bound. To test this restriction, consider

the null and alternative hypothesis:

H0 : T ≤ 0 (5.14)

H1 : T > 0.

Since the distribution of (5.13) is difficult to characterize, I use stationary boot-

strap to approximate the p-value under the null hypothesis. The stationary bootstrap

is used to generate time indices from which we recreate (with replacement) boot-

strapped returns {R⋆
m,t→N} (Politis and Romano, 1994). The same bootstrapped

time indices are used to re-estimate the physical CDF and risk-neutral quantile func-

tion. I repeat the bootstrap exercise 100,000 times and for each bootstrap sample,

I calculate the test statistic T ⋆. Finally, the empirical p-value is obtained as the

fraction of times T ⋆ ≤ 0. The last column in Table 4 shows that the p-value is

7.5%, which provides preliminary evidence that the distribution bound significantly

exceeds the HJ bound in the left-tail.

Table 4: Sample bounds and bootstrap result

Sample size HJ bound distribution bound p-value
312 0.133 0.260 0.075

Note: This table reports the HJ and distribution bound for monthly S&P500 returns over the
period 1996–2021. The distribution bound is evaluated at τ = 0.0374. The final column denotes
the p-value of the null hypothesis in (5.14). The p-value is obtained from 100,000 bootstrap samples
and counts the fraction of times that T ⋆ ≤ 0.
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Remark 3. When the HJ bound is stronger than the distribution bound, many of

the bootstrap samples may not include disaster shocks. Over the entire sample

period, there are only two instances where returns were less than -20%: in September

2008 and February 2020. When considering bootstrap samples that include both of

these months, the p-value is only 3.6%. In contrast, the p-value increases to 22%

for bootstrap samples that exclude these months. These findings underscore the

sensitivity of the test to the presence of disaster shocks. Overall, the results suggest

that, unconditionally, the SDF needs to be highly volatile to be consistent with local

differences between the physical and risk-neutral measure in the left-tail.

6 AModel-Free Lower Bound on Disaster Risk Pre-

mia

The previous findings indicate that the risk-neutral quantile function is not a good

approximation of the physical quantile function in the left-tail. In this section, I

derive a lower bound on disaster risk premia observed from option prices. This lower

bound does not require parameter estimation and relaxes the assumption of a time-

homogeneous linear relation between the physical and risk-neutral quantiles in (2.3).

6.1 Approximating the Quantile Difference

To analyze the difference between Qt,τ and Q̃t,τ , I use some elementary tools from

functional analysis. The quantile function can be regarded as a map φ between

normed spaces, taking as input a distribution function and returning the quantile

function: φ(Ft) = F−1
t = Qt,τ . Expanding φ around the observed risk-neutral CDF

yields

Qt,τ − Q̃t,τ = φ(Ft)− φ(F̃t) = φ′
F̃t
(Ft − F̃t) + o

(∥∥∥Ft − F̃t

∥∥∥) , (6.1)

where ∥·∥ is a norm on a suitable linear space24 and φ′
F̃t
(Ft − F̃t) is the Gâteaux

derivative of φ at F̃t in the direction of Ft:

φ′
F̃t
(Ft − F̃t) := lim

λ↓0

φ
[
(1− λ)F̃t + λFt

]
λ

=
∂

∂λ
φ
(
(1− λ)F̃t + λF

) ∣∣∣∣
λ=0

. (6.2)

Heuristically, the Gâteaux derivative can be thought of as measuring the change

24Formally, the space can be defined as {∆ : ∆ = c(F −G), F,G ∈ D, c ∈ R} and D is the space of
distribution functions (Serfling, 2009). See van der Vaart (2000, Section 20.1) and Serfling (2009,
p. 217) for further details about the approximation.
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in the quantile function when the risk-neutral distribution is moved in the direction

of the physical distribution. Appendix A.9 shows that the Gâteaux derivative is

given by

φ′
F̃t
(Ft − F̃t) =

τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )
=

τ − ϕt(τ)

f̃t(Q̃t,τ )
, (6.3)

where ϕt(τ) = Ft(Q̃t,τ ) denotes the conditional ordinal dominance curve. I proceed

under the working hypothesis that the remainder term in (6.1) is “small” in the

sup-norm, ∥g∥∞ = supx |g(x)|.

Assumption 6.1. The remainder term in (6.1) can be neglected.

Remark 4. The assumption implies that the first order approximation in (6.1) is

accurate. The condition that ||Ft − F̃t||∞ is small can be understood as excluding

near-arbitrage opportunities, since the distribution bound in Proposition 5.1 shows

that substantial pointwise differences between Ft(·) and F̃t(·) lead to a very volatile

SDF.

I combine (6.1) and (6.3) in conjunction with Assumption 6.1 to obtain the ap-

proximation

Qt,τ − Q̃t,τ ≈ τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )︸ ︷︷ ︸
risk-adjustment

. (6.4)

The second term on the right can be thought of as a risk-adjustment term to capture

the unobserved wedge between Qt,τ and Q̃t,τ . The approximation in (6.4) contains

the terms Q̃t,τ and f̃t(Q̃t,τ ), which are directly observed at time t using the Breeden

and Litzenberger (1978) formula in (2.7). However, Ft(·) is unknown and hence (6.4)

cannot be used directly to approximate Qt,τ .

6.2 A Lower Bound on Disaster Risk Premia

To make further progress, I show that the numerator term, τ−Ft(Q̃t,τ ), can be lower

bounded with option data under economically motivated constraints. This bound,

combined with the approximation in (6.4), will then imply a lower bound on disaster

risk premia.

I start from the observation that the SDF in representative agent models can be

expressed as a function of the market return (Chabi-Yo and Loudis, 2020):

Et [Mt→N ]

Mt→N
=

u′(Wtx0)
u′(Wtx)

Ẽt

[
u′(Wtx0)
u′(Wtx)

] with x = Rm,t→N and x0 = Rf,t→N , (6.5)
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where Wt is the agent’s wealth at time t and u(x) represents the agent’s utility

function. Define

ζ(x) :=
u′(WtRf,t→N )

u′(Wtx)
and θk =

1

k!

(
∂kζ(x)

∂xk

)
x=Rf,t→N

. (6.6)

Notice that ζ(·) is simply the inverse of the intertemporal marginal rate of substi-

tution (IMRS) and θk are the coefficients of its Taylor expansion around Rf,t→N .

I make the following assumptions about the market return and the IMRS of the

representative agent.

Assumption 6.2. In the representative agent model, it holds that (i) Ẽt

[
R3

m,t→N

]
<

∞; and (ii) ζ(4)(x) ≤ 0.

Assumption 6.2(i) allows for fat tails in the risk-neutral distribution as long as

the third moment exists. This assumption relaxes the implicit assumption made

by Chabi-Yo and Loudis (2020) that infinitely many moments exist. Figure G8 in

the Appendix illustrates that the risk-neutral distribution frequently exhibits a finite

number of moments, some of which may not exceed 4, particularly in turbulent mar-

ket conditions. Chabi-Yo and Loudis (2020) present sufficient conditions for 6.2(ii)

to hold, which relate to the sign of the fifth derivative of the utility function of the

representative agent. Specifically, for common utility functions such as CRRA or

HARA utility, parameter restrictions are needed to ensure that 6.2(ii) holds.25

I need one additional assumption to bound disaster risk premia. To state this

assumption and the resulting lower bound, I use the following notation for high-order

risk-neutral moments and truncated high-order risk-neutral moments, respectively.

M̃(n)
t→N := Ẽt [(Rm,t→N −Rf,t→N )

n
]

M̃(n)
t→N [k0] := Ẽt [1 (Rm,t→N ≤ k0) (Rm,t→N −Rf,t→N )n] . (6.7)

Assumption 6.3. In the representative agent model, the following holds:

(i) (−1)k−1θk ≥ 1
Rk

f,t→N

for k = 1, 2, 3

(ii) M̃(3)
t→N ≤ 0.

Chabi-Yo and Loudis (2020, Table 6) provide empirical evidence that 6.3(i) holds

with equality when estimating the conditional equity premium. Assumption 6.3(ii)

is a very mild restriction on risk-neutral skewness, which is almost always negative

25For example, for CRRA utility, the risk aversion coefficient cannot be too large. See Appendix
D for a detailed discussion.
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at every date and time horizon. This empirical fact is well known.26

The following two propositions show how option data can be employed to establish

bounds on the difference between the physical and risk-neutral measures in the left-

tail.

Proposition 6.4 (Lower Bound on CDF). Suppose Assumptions 6.2 and 6.3 hold,

and assume that the risk-neutral density exists. Then,

τ − Ft

(
Q̃t,τ

)
≥

∑3
k=1

(−1)k−1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k−1

Rk
f,t→N

M̃(k)
t→N

=: CLBt,τ , (6.8)

for all τ ≤ τ ′, where τ ′ is defined implicitly by

Q̃t,τ ′ = min

(
Rf,t→N −

√
ṼARt(Rm,t→N ), Q̃t,τ∗

)
,

and Q̃t,τ∗ is defined in Theorem A.12.

Proof. See Appendix A.10. ■

Proposition 6.5 (Lower Bound on Disaster Risk Premia). Consider the same as-

sumptions in Proposition 6.4 and assume additionally that Assumption 6.1 holds.

Then, for all τ ≤ τ ′

Qt,τ − Q̃t,τ ≥

risk-adjustment︷ ︸︸ ︷
CLBt,τ

f̃t(Q̃t,τ )
=: LBt,τ . (6.9)

Proof. By Assumption 6.1, the approximation in (6.4) holds, which in combination

with Proposition 6.4 renders

Qt,τ − Q̃t,τ

(6.4)
≈ τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )

(6.8)

≥ 1

f̃t(Q̃t,τ )


∑3

k=1
(−1)k+1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k+1

Rk
f,t→N

M̃(k)
t→N

 . ■

Proposition 6.4 provides a bound on the physical CDF that requires no param-

eter estimation and relies solely on time t information. This result complements

recent work on belief recovery. Ross (2015) demonstrated CDF recovery under the

assumption of transition independence, but subsequent research has questioned this

26Chabi-Yo and Loudis (2020) argue that all odd risk-neutral moments should be negative, since
they expose the investor to unfavorable market conditions.
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assumption (Borovička et al., 2016; Qin et al., 2018; Jackwerth and Menner, 2020).

In contrast, Proposition 6.4 establishes a lower bound on the left-tail of the physical

distribution using a different set of mild economic constraints. Additionally, Section

2.3 showed that the right-tail of Ft can be approximately recovered from the risk-

neutral distribution due to the minimal need for risk-adjustment. These findings

suggest the potential for approximate recovery of Ft using option prices.

I will test this hypothesis using the lower bound on disaster risk premia in Propo-

sition 6.5. Specifically, a tight lower bound in (6.9) would enable direct inference on

both the physical distribution (Qt,τ ) and disaster risk premia (Qt,τ − Q̃t,τ ). While

Section 2.2.1 proposed the quantile model (2.3) to estimate Qt,τ , it can be criticized

for having time-homogeneous coefficients. Proposition 6.5 relaxes that assumption.

Furthermore, the lower bound in (6.9) is not prone to the historical sample bias

critique of Welch and Goyal (2008). Alternatively, one can estimate a disaster risk

model to infer Qt,τ , but this approach is also susceptible to misspecification concerns

and faces challenges in estimation due to the scarcity of disaster events in the data

(Julliard and Ghosh, 2012; Martin, 2013).

6.3 Calculating the Lower Bound

Before assessing how tight the lower bound is in Proposition 6.5, I outline the proce-

dure to calculate it, which depends on CLBt,τ and f̃t(Q̃t,τ ). Both functions can be

derived from Q̃t,τ , which is estimated using the same data and procedure of Section

2.3. To see that f̃t(Q̃t,τ ) can be derived from Q̃t,τ , notice that
d
dτ Q̃t(τ) = 1/f̃t(Q̃t,τ ).

The latter term can thus be approximated by27

1

f̃t(Q̃t,τ )
≈ Q̃t(τ + h)− Q̃t(τ − h)

2h
,

where h is the bandwidth of the τ -grid. Second, to calculate CLBt,τ in (6.8), I use

Q̃t,τ , as well as the formula for high-order risk-neutral moments in Appendix A.11.

Given the evidence in Table 2 that Qt,τ > Q̃t,τ in the left-tail, Proposition 6.5 has

nontrivial content in the data if LBt,τ ≥ 0. Appendix Table F2 contains summary

statistics of LBt,τ , which show that the lower bound is always positive, right-skewed,

more pronounced in the right-tail and economically meaningful in magnitude, with

outliers that can spike up to 29%.

27I slightly abuse notation to emphasize that the derivative is taken w.r.t. τ , so that Q̃t(τ + h)

denotes Q̃t,τ+h.
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6.4 Tightness of the Lower Bound: In-sample Evidence

To test whether the lower bound in Proposition 6.5 is tight, I form excess quan-

tile returns: Rm,t→N − Q̃t,τ . Since Q̃t,τ is observed at time t, it follows that

Qt,τ (Rm,t→N − Q̃t,τ ) = Qt,τ (Rm,t→N ) − Q̃t,τ . Subsequently, I use QR to estimate

the model

Qt,τ (Rm,t→N )− Q̃t,τ (Rm,t→N ) = β0(τ) + β1(τ)LBt,τ ,

[β̂0(τ), β̂1(τ)] = argmin
(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − Q̃t,τ − β0 − β1LBt,τ ). (6.10)

Regression (6.10) is a quantile analogue of the mean excess return regressions of

Welch and Goyal (2008). Under the null hypothesis that the lower bound is tight, it

holds that

H0 : [β0(τ), β1(τ)] = [0, 1]. (6.11)

Less restrictive, one can test whether β0(τ) = 0 and β1(τ) > 0, which implies that

the statistical “factor” LBt,τ explains the conditional quantile wedge.28

Table 5 presents the results of regression (6.10). The null hypothesis of a tight

lower bound in (6.11) is not rejected for τ = 0.2, but it is rejected for τ ∈ {0.05, 0.1}
across all horizons. When the null hypothesis is rejected, the β1(τ)-coefficient exceeds

1, consistent with the theory that LBt,τ represents a lower bound on disaster risk

premia. In all cases, the lower bound is economically meaningful, since β1(τ) is

significantly different from 0, while β0(τ) = 0 can never be rejected. The explanatory

power of the regression in Table 5 is modest, as shown by the R1(τ) measure-of-fit:

R1(τ) = 1− minb0,b1
∑

ρτ (Rm,t→N − b0 − b1LBt,τ )

minb0
∑

ρτ (Rm,t→N − b0)
. (6.12)

But, following the reasoning of Section 5.2, the predictive power in the left-tail can-

not be too big, for otherwise near-arbitrage opportunities exist.

I also directly test the predictive power of the lower bound in estimating the phys-

ical quantile function. To this end, I use the following model-free quantile forecast:

Q̂t,τ := Q̃t,τ + LBt,τ . (6.13)

28For example, if we start with a quantile factor model Qt,τ = Q̃t,τ + β(τ)LBt,τ , the model has

one testable implication for the data: the intercept in a quantile regression of Rm,t→N − Q̃t,τ on
LBt,τ should be zero. Quantile factor models have recently been proposed by Chen et al. (2021).
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Table 5: Quantile regression with lower bound

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] Obs

30 days 0.05 -0.01
(0.005)

4.43
(0.349)

0.00 6.03 4333

0.1 -0.01
(0.006)

2.17
(0.450)

0.03 3.18

0.2 -0.01
(0.006)

1.33
(0.400)

0.02 0.41

60 days 0.05 -0.01
(0.013)

5.53
(0.571)

0.00 3.60 4312

0.1 -0.02
(0.011)

3.25
(0.540)

0.00 2.23

0.2 -0.02
(0.009)

1.50
(0.398)

0.27 0.48

90 days 0.05 -0.02
(0.032)

6.37
(1.113)

0.00 4.91 4291

0.1 -0.02
(0.018)

3.05
(0.528)

0.00 4.43

0.2 -0.02
(0.019)

1.36
(0.626)

0.69 1.46

Note: This table reports the QR estimates of (6.10) over the sample period
2003-2021 at different horizons, using overlapping returns. Standard errors
are shown in parentheses and calculated using SETBB with a block length
equal to the prediction horizon. Wald test denotes the p-value of the joint
restriction [β0(τ), β1(τ)] = [0, 1]. R1(τ) denotes the goodness-of-fit measure
(6.12).

To evaluate the accuracy of this forecast, I use QR to estimate the model

Qt,τ = β0(τ) + β1(τ)Q̂t,τ . (6.14)

An accurate forecast would imply the joint restriction

H0 : β0(τ) = 0, β1(τ) = 1. (6.15)

Table 6 summarizes the estimates of (6.14) for several percentiles. The results

compare favorably to the risk-neutral estimates in Table 2. First, the point estimates

are closer to the [0, 1] benchmark. Second, the Wald test on the joint restriction in

(6.15) is never rejected except for τ = 0.05 at the 60-day horizon. Third, the in-

sample explanatory power is higher. The same conclusion applies when comparing

the predictive results to the expanding quantile regression from Table B1 in the Ap-

pendix. Collectively, these findings suggest that Q̂t,τ can be considered as a good

lower bound on the physical quantile function in the left-tail.
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Table 6: Quantile regression with model-free quantile forecast

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Obs

30 days 0.05 0.29
(0.249)

0.70
(0.265)

0.06 6.28 9.94 4333

0.1 0.28
(0.250)

0.72
(0.260)

0.18 3.57 4.02

0.2 0.57
(0.381)

0.43
(0.388)

0.29 0.58 2.53

60 days 0.05 0.30
(0.382)

0.71
(0.426)

0.02 3.40 17.81 4312

0.1 0.38
(0.352)

0.61
(0.373)

0.13 2.35 9.22

0.2 0.44
(0.487)

0.56
(0.498)

0.21 0.57 4.28

90 days 0.05 0.36
(0.520)

0.64
(0.602)

0.05 4.26 21.98 4291

0.1 0.31
(0.482)

0.70
(0.521)

0.06 4.19 13.22

0.2 0.23
(0.696)

0.78
(0.710)

0.48 0.70 5.99

Note: This table reports the QR estimates of (6.14) over the sample period 2003-2021.
Standard errors are shown in parentheses and calculated using the SETBB, with block length
equal to the prediction horizon. Wald test gives the p-value of the Wald test on the joint
restriction: β̂0(τ) = 0, β̂1(τ) = 1. R1(τ) denotes the in-sample goodness-of fit criterion (2.5).
R1

oos(τ) is the out-of-sample goodness-of fit, using a rolling window size equal to 10 times the
return horizon.

6.5 Tightness of the Lower Bound: Out-of-sample Evidence

Given that the in-sample results from Table 6 suggest that Q̂t,τ is a good lower

bound for Qt,τ , it is natural to assess its out-of-sample performance by using Q̂t,τ to

directly predict Qt,τ , which does not require any parameter estimation.

To assess the out-of-sample performance, I use the R1
oos(τ) measure of fit defined

in (2.6) with Q̂t,τ instead of Q̃t,τ . Table 6 shows that Q̂t,τ improves upon the histor-

ical rolling quantile out-of-sample in all cases. In particular, this outperformance is

most pronounced at the 5th percentile, which is expected since option data are known

to provide useful information about extreme downfalls in the stock market (Bates,

2008; Bollerslev and Todorov, 2011). In Appendix F.2, I run a battery of robustness

tests which show that, out-of-sample, LBt,τ better predicts the conditional quantile

function than other benchmarks such as the risk-neutral quantile or the VIX index.

The latter result is particularly encouraging since the VIX predictor uses in-sample

information.
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6.6 Robustness of the QR Estimates

The in- and out-of-sample results support LBt,τ as a robust lower bound for disaster

risk premia. It is instructive to compare this lower bound to the disaster risk premia

reported in Figure 3b, which are inferred from the quantile regression in (2.4). Con-

sistent with the theory, the estimated disaster risk premium at τ = 0.05 exceeds the

lower bound in 99% of cases for 30-day returns and 99.9% for 60-day returns. When

violations of the lower bound occur, the differences are typically small.

Figures 8a and 8b show the lower bound for 30- and 60-day returns, respectively,

alongside the disaster risk premium estimated from the quantile regression (2.4). In

both cases, there is a substantial correlation between the lower bound and the dis-

aster risk premium obtained from the QR estimates. Especially during the global

financial crisis and the Covid-19 crisis, both methods predict significant increases

in the disaster risk premium. Outside these crisis periods, the lower bound is more

conservative. Overall, the model-free lower bound corroborates the robustness of the

estimated disaster risk premium in Figure 3b.
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(a) 30-day returns
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Lower bound
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Figure 8: Lower bound on disaster risk premium at 5th percentile. Panel (a)
shows the lower bound on the disaster risk premium for 30-day returns, at τ = 0.05. QR denotes
the estimated disaster risk premium from the quantile regression (2.4). The right panel shows a
similar graph for 60-day returns. Both figures are smoothed using a 30-day rolling window. The
two shaded bars signify the Great Recession period (Dec 2007 – June 2009) and Covid-19 crisis
(Feb 2020 – April 2020).

7 Conclusion

I use return and option data on the S&P500 in combination with quantile regression

to estimate local differences between the conditional risk-neutral and physical quan-

tile functions. Empirically, these differences are substantial in the left-tail, whereas
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in the right-tail, they are barely discernible. Therefore, the lion’s share of the equity

premium is driven by downside returns, which is model-free evidence for disaster risk.

By tracking these quantile differences over time, the results also demonstrate that

disaster risk is time-varying, pervasive, and a driving force behind much of the equity

premium, even outside crisis periods. Additionally, my findings show that disaster

risk is more nuanced than previous literature suggests. Much of the disagreement can

be attributed to the incorporation of conditioning information. While prior research

primarily focused on unconditional estimation, my approach accounts for condition-

ing information embedded in the risk-neutral quantile function, which is crucial to

obtain accurate estimates of disaster risk.

To build on this finding, I show that disaster risk makes the SDF highly volatile.

In particular, option strategies involving a short position in an asset that pays one

dollar in case of a disaster exhibit substantially higher Sharpe ratios compared to

a direct investment in the market portfolio. The data reveal that such investment

strategies yield a monthly Sharpe ratio of 30%, more than doubling the Sharpe ratio

of the market return.

Finally, I suggest a model-free lower bound on disaster risk premia observed from

option prices. This lower bound serves as a good predictor of the quantile wedge,

exhibiting spikes during crises and significant fluctuations over time. Furthermore,

the lower bound closely aligns with estimates of disaster risk premia based on quantile

regression, thereby reinforcing the robustness of my findings.
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A Proofs

This section contains proofs and detailed calculations of results used in the main

paper.

A.1 Decomposing the Equity Premium

For any atomless integrable random variable X with CDF F (·) and quantile function

Q = F−1, we have

E(X) =

∫
R
xdF (x) =

∫ 1

0

Q(τ) dτ.

The second identity holds by the change of variables formula for the Lebesgue-

Stieltjes integral. In case F has a density, the formula follows from a simple substi-

tution x → Q(τ). Hence,

Et [Rm,t→N ]−Rf,t→N = Et [Rm,t→N ]− Ẽt (Rm,t→N ) =

∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ.

A.2 Stochastic Dominance and Pricing Kernel Monotonicity

In this section I provide more details on the relation between stochastic dominance

and pricing kernel monotonicity. To begin with, recall that the physical distribution

is first-order stochastic dominant (FOSD) over the risk-neutral distribution if and

only if Ft(x) ≤ F̃t(x), or Q̃t,τ ≤ Qt,τ . The definition is also equivalent to Ft(Q̃t,τ ) ≤ τ

for all τ ∈ (0, 1), which follows from the substitution x → Q̃t,τ .

To see the connection with pricing kernel monotonicity, recall from Beare and

Schmidt (2016) that pricing kernel monotonicity is equivalent to ϕt(τ) := Ft(Q̃t,τ )

being a convex function for all τ .29 Figure A1 shows two different ordinal dominance

curves (ODCs); the blue line corresponds to a situation where FOSD holds and

the pricing kernel is monotonic (hence convex), whereas the yellow line shows a

scenario where FOSD does not hold and convexity automatically fails. The geometric

argument for why non-monotonicity is implied by a failure of FOSD is conveyed by

the figure: if FOSD fails, the yellow line must cross the 45-degree line for some τ ∈
(0, 1), which automatically implies that the ODC is non-convex since the ODC has

to satisfy ϕt(1) = 1, because the physical and risk-neutral measures are equivalent.

The proposition below thus follows.

Proposition A.1. If the pricing kernel is a monotonically decreasing function of

the market return, the physical measure first-order stochastically dominates the risk-

29Beare and Schmidt (2016) actually consider the reverse function ϕt(τ) = F̃t(Qt,τ ), so that
pricing kernel monotonicity is equivalent to ϕt(·) being concave.
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neutral measure. Conversely, a violation of FOSD implies a violation of pricing

kernel monotonicity.

A violation of FOSD is puzzling from the viewpoint of expected utility maximiza-

tion. In this framework, the SDF is given by u′(Rm,t→N )/Et(u
′(Rm,t→N )), where

u(·) is a utility function and the initial endowment is normalized to one for simplicity.

The following proposition shows that a sufficient (but not necessary) condition for

FOSD to hold is that u′(·) is non-increasing; a rather ubiquitous assumption in asset

pricing models.

Proposition A.2. In the expected utility framework, a sufficient condition for the

physical measure to first-order stochastically dominate the risk-neutral measure is

that u′(·) is non-increasing.

Proof. Using the SDF to change from physical to risk-neutral measure, it follows

that FOSD is equivalent to

Ft(x) ≤ F̃t(x)

⇐⇒ Et [1 (Rm,t→N ≤ x)] ≤ Et

[
u′(Rm,t→N )

Et [u′(Rm,t→N )]
1 (Rm,t→N ≤ x)

]
⇐⇒ 0 ≤ COVt(1 (Rm,t→N ≤ x) , u′(Rm,t→N )).

By Lemma E.1, the covariance above is nonnegative if u′(·) is non-increasing. ■
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Non−convex ODC

Figure A1: Ordinal dominance curve with and without first-order stochas-
tic dominance. This figure shows two different ordinal dominance curves. The blue ODC
corresponds to a situation where the physical measure FOSD the risk-neutral measure, whereas the
yellow line shows a situation where FOSD fails.
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A.3 Proof of Proposition 4.1

I separately show (i) and (ii) of Proposition 4.1. To prove these results, I use the

following lemma.

Lemma A.3. In the lognormal model, the physical and risk-neutral quantile func-

tions conditional on µt, σt are given by, respectively

Qt,τ = exp

[
(µt −

1

2
σ2
t )N + σt

√
NΦ−1(τ)

]
(A.1)

Q̃t,τ = exp

[
(rf − 1

2
σ2
t )N + σt

√
NΦ−1(τ)

]
, (A.2)

where Φ−1(·) denotes the quantile function of the standard normal distribution. If

µt ∼ N (µ, σ2
µ) and independent from σt, the physical quantile function conditional

on σt, but not µt, equals

Qt,τ (σt, σµ) = exp

[
(µ− 1

2
σ2
t )N +

(√
σ2
µN

2 + σ2
tN
)
Φ−1(τ)

]
. (A.3)

Proof. The quantile function of a random variable X such that logX ∼ N (a, b2), is

given by exp(a + bΦ−1(τ)). Therefore, the quantile functions conditional on µt, σt

in (A.1) and (A.2) follow immediately from the conditional lognormal assumption.

In (A.3), the function is conditioned on σt, but not µt. Since µt is assumed to be

normally distributed and independent from σt, it follows that

(µt −
1

2
σ2
t )N + σt

√
NZt+N |σt ∼ N

(
(µ− 1

2
σ2
t )N, σ2

µN
2 + σ2

tN

)
.

The expression in (A.3) can now be obtained again using the general formula of the

lognormal quantile function. ■

Proof of Proposition 4.1(i). Recall that
√
a2 + b2 ≤

√
a2 + b2 + 2ab = a+b, provided

a, b ≥ 0. This inequality shows that

exp
[(√

σ2
µN

2 + σ2
tN − σt

√
N
)
Φ−1(τ)

]
≤ exp

[(√
σ2
µN

2 + σ2
tN − σt

√
N
) ∣∣Φ−1(τ)

∣∣]
≤ exp

(
σµN

∣∣Φ−1(τ)
∣∣)

= 1 +O (σµN) ,

uniformly in τ ∈ I and the support of σt. In combination with Lemma A.3, it follows
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that

Qt,τ (σt, σµ) = Q̃t,τe
(µ−rf )N exp

[(√
σ2
µN

2 + σ2
tN − σt

√
N
)
Φ−1(τ)

]
= Q̃t,τe

(µ−rf )N (1 +O (σµN)) . ■

In order to prove Proposition 4.1(ii), I need additional regularity conditions stated

in Assumption A.4 below. The following notation for the quantile empirical process

will be used:

LT,τ (β, σµ) :=
1

T

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ )

Lτ (β, σµ) := lim
T→∞

1

T

T∑
t=1

E
[
ρτ (Rm,t→N − β0 − β1Q̃t,τ )

]
.

Assumption A.4. In the lognormal model, assume additionally that

(i) E [Rm,t→N ] and E
[
Q̃t,τ

]
are finite,

(ii) Lτ (β, 0) has an identifiably unique minimum β∗ at σµ = 0, i.e., for all ε > 0

inf
∥β−β∗∥>ε

Lτ (β, 0)− Lτ (β
∗, 0) > 0.

(iii) as T → ∞, for any compact set B and sequence bT ↘ 0,

sup
β∈B

∥∥Lτ (β, σ
T
µ )− Lτ (β, 0)

∥∥ = o(1) (Uniform continuity). (A.4a)

sup
σµ≤bT

sup
β∈B

∥LT,τ (β, σµ)− Lτ (β, σµ)∥ = op(1) (Uniform LLN). (A.4b)

Proof of Proposition 4.1(ii). Consider the population minimization problem of quan-

tile regression at σµ = 0

[β∗
0(0; τ), β

∗
1(0; τ)] := argmin

(β0,β1)∈R2

Lτ (β, 0). (A.5)

Assumptions A.4(i,ii) ensure that the objective function is well defined and the so-

lution in (A.5) is unique for all τ ∈ I. At σµ = 0, Qt,τ = e(µ−r)N , so that

[β∗
0(0; τ), β

∗
1(0; τ)] = [0, e(µ−r)N ]. To ease notation in the following derivation, I

write β̂(σT
µ ) := argminβ LT,τ (β, σ

T
µ ) and β∗(0) = argminβ Lτ (β, 0). It then follows
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that for every ε > 0 there exists a δ > 0 such that

P
(∥∥∥β̂(σT

µ )− β∗(0)
∥∥∥ > ε

)
≤ P

(
Lτ (β̂(σ

T
µ ), 0)− Lτ (β

∗(0), 0) > δ
)

= P
(
Lτ (β̂(σ

T
µ ), 0)− LT,τ (β̂(σ

T
µ ), σ

T
µ ) + LT,τ (β̂(σ

T
µ ), σ

T
µ )− Lτ (β

∗(0), 0) > δ
)

≤ P
(
Lτ (β̂(σ

T
µ ), 0)− LT,τ (β̂(σ

T
µ ), σ

T
µ ) + LT,τ (β

∗(0), σT
µ )− Lτ (β

∗(0), 0) > δ
)

≤ P

(
2 sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥ > δ

)
.

The second line follows from identification and the second to last line from the

minimization property of β̂(σT
µ ). Therefore, it suffices to show that

sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥ = op(1).

This claim follows from

sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥

≤ sup
β∈B

∥∥Lτ (β, 0)− Lτ (β, σ
T
µ )
∥∥+ ∥∥Lτ (β, σ

T
µ )− LT,τ (β, σ

T
µ )
∥∥

≤ sup
β∈B

∥∥Lτ (β, 0)− Lτ (β, σ
T
µ )
∥∥+ sup

σµ≤bT

sup
β∈B

∥Lτ (β, σµ)− LT,τ (β, σµ)∥ .

The first term is o(1) by (A.4a) and the second term is op(1) by (A.4b), which

completes the proof. The claim in (4.5) easily follows from (4.4).

■
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A.4 Proof of Proposition 5.1

Proof. Starting from the definition of the risk-neutral quantile function, it follows

that

τ = P̃t

[
Rm,t→N ≤ Q̃t,τ

]
= Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
=

1

Et [Mt→N ]
Et

[
Mt→N1

(
Rm,t→N ≤ Q̃t,τ

)]
=

1

Et [Mt→N ]

(
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
+ Et [Mt→N ]Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)])
=

1

Et [Mt→N ]
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
+ Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
︸ ︷︷ ︸

=ϕt(τ)

.

(A.6)

Rearranging then yields

1

Et [Mt→N ]
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
= τ − ϕt(τ).

Using Cauchy-Schwarz renders the inequality

1

Et [Mt→N ]
σt(Mt→N )σt

(
1

(
Rm,t→N ≤ Q̃t,τ

))
≥ |τ − ϕt(τ)|

σt(Mt→N )

Et [Mt→N ]
≥ |τ − ϕt(τ)|

σt

(
1

(
Rm,t→N ≤ Q̃t,τ

)) . (A.7)

Finally, since 1
(
Rm,t→N ≤ Q̃t,τ

)
is a Bernoulli random variable, it follows that

σt

(
1

(
Rm,t→N ≤ Q̃t,τ

))
=
√

ϕt(τ)(1− ϕt(τ)). (A.8)

Proposition 5.1 now follows after substituting (A.8) into (A.7). The bound formu-

lated in terms of the CDFs in (5.2) follows from the substitution Q̃t,τ → x. ■

A.5 Distribution Bound when SDF and Return are Jointly

Normal

In this Section I derive (5.7) and (5.8) , when M and Rm are jointly normal. First

consider (5.8). The proof of the distribution bound in Proposition 5.1 gives the

following identity

|τ − ϕ(τ)|
Rf

=
∣∣∣COV

(
1

(
Rm ≤ Q̃τ

)
,M
)∣∣∣ .
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Standard SDF properties also yield the well known result

|E(Rm)−Rf |
Rf

= |COV (Rm,M)| .

These results, combined with (5.7) prove (5.8), since

HJ bound

distribution bound
=

|E[Rm]−Rf |
σRRf

|τ−ϕ(τ)|√
ϕ(τ)(1−ϕ(τ))Rf

(5.7)
=

√
ϕ(τ)(1− ϕ(τ))

σRfR(Q̃τ )
,

where fR(Q̃τ ) is the marginal density of Rm.

Finally, I make use of the following covariance identities to prove (5.7).

Lemma A.5 (Hoeffding). For any square integrable random variable X and Z with

marginal CDFs FX , FZ and joint CDF FX,Z , it holds that

COV [1 (Z ≤ z) , X] = −
∫ ∞

−∞
[FX,Z(x, z)− FX(x)FZ(z)] dx (A.9)

COV [Z,X] = −
∫ ∞

−∞
COV [1 (Z ≤ z) , X] dz. (A.10)

Proof. See Lehmann (1966). ■

I also need a relation for the bivariate normal distribution. Suppose that X,Z

are jointly normal with correlation ρ, mean µX , µZ and variance σ2
X , σ2

Z , then

∂Φ2(x, z; ρ, µX , µZ , σ
2
X , σ2

Z)

∂ρ
= σXσZϕ2(x, z; ρ, µX , µZ , σ

2
X , σ2

Z), (A.11)

where Φ2(·) denotes the bivariate normal CDF and ϕ2(·) denotes the bivariate normal

PDF (Sungur, 1990). We can now prove a covariance identity for jointly normal

random variables.

Proposition A.6. Suppose Rm and M are jointly normal with correlation ρ, then

−COV [1 (Rm ≤ x) ,M ] = COV [Rm,M ]ϕR(x), (A.12)

where ϕR(·) is the marginal density of Rm.

Proof. To lighten notation, I suppress the dependence on µR, µM , σ2
R, σ

2
M in the joint
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CDF and PDF. We then have

−COV [1 (Rm ≤ x) ,M ] =

∫ ∞

−∞
Φ2(x,m; ρ)− Φ2(x,m; 0) dm

=

∫ ∞

−∞

∫ ρ

0

σRσMϕ2(x,m; y) dy dm

= σRσMρϕR(x)

= COV [Rm,M ]ϕR(x),

where, in the first line, I use (A.9) together with FR(r)FM (m) = Φ2(r,m; 0), the

second line follows from (A.11) and the third line follows from Fubini’s theorem to

swap the order of integration and
∫∞
−∞ ϕ2(x,m; y) dm = ϕR(x). ■

Remark 5. The second covariance identity in (A.10) shows that COV [1 (Rm ≤ x) ,M ]

is a measure of local dependence. In case of joint normality (A.12), the weight is

given by the marginal PDF. For other distributions, the weighting factor is more

complicated, but sometimes can be given an explicit form using a local Gaussian

representation (see Chernozhukov et al. (2018)).

A.6 Minimizer of Distribution Bound with Normal SDF

This section shows that the relative efficiency between the HJ bound and distribution

bound is minimized when Q̃τ = µR. To see this, write x = Q̃τ , and use F (·) to denote
the physical CDF of Rm. I also drop the R subscript for f to avoid notational clutter.

Consider

Γ(x) =
F (x)(1− F (x))

f(x)2
.

Minimizing Γ(x) is equivalent to minimizing (5.8) and first order conditions imply

that the optimal x∗ satisfies

[f(x∗)− 2F (x∗)f(x∗)]f(x∗)2 − 2f(x∗)f ′(x∗)[F (x∗)(1− F (x∗))] = 0. (A.13)

Since f, F are the respective PDF and CDF of the normal random variable Rm, it

follows that f ′(µR) = 0 and F (µR) = 1/2. As a result, (A.13) holds when Q̃τ∗ =

x∗ = µR.

A.7 Distribution Bound when SDF and Return are Log-normal

This section provides a closed form approximation for the relative efficiency between

the HJ bound and distribution bound under joint lognormality. The result depends

on Stein’s Lemma (Casella and Berger, 2002, Lemma 3.6.5):30

30I use the form of Stein’s Lemma reported in Cochrane (2005, p. 163), which follows from Stein’s
lemma as reported in Casella and Berger (2002).
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Lemma A.7 (Stein’s Lemma). If X1, X2 are bivariate normal, g : R → R is differ-

entiable and E |g′(X1)| < ∞, then

COV (g(X1), X2) = E [g′(X1)]COV(X1, X2).

To prove the approximation, we approximateM by a first order Taylor expansion,

which gives

M̂ = e−(rf+
σ2
M
2 )N + ZMσM

√
Ne−(rf+

σ2
M
2 )N .

Notice that M̂ = M + op(
√
N). Consequently, by Stein’s Lemma

COV(Rm,M) ≈ COV(Rm, M̂) = σM

√
Ne−(rf+

σ2
M
2 )NCOV(Rm, ZM )

= σM

√
Ne−(rf+

σ2
M
2 )NE

[
σR

√
N exp

([
µR − σ2

R

2

]
N + σR

√
NZR

)]
COV(ZR, ZM )

= σMσRNe−(rf+
σ2
M
2 )NeµRNCOV(ZR, ZM ).

By Proposition A.6,

COV(1 (logRm ≤ x) ,M) ≈ COV
(
1 (logRm ≤ x) , M̂

)
= σM

√
Ne−(rf+

σ2
M
2 )NCOV (1 (logRm ≤ x) , ZM )

= σM

√
Ne−(rf+

σ2
M
2 )NCOV

(
1

(
(µR − σ2

R/2)N + σR

√
NZR ≤ x

)
, ZM

)
= −σM

√
Ne−(rf+

σ2
M
2 )Nf (x)COV (ZR, ZM ) .

Here, f is the density of a normal random variable with mean (µR − σ2
R/2)N and

variance Nσ2
R. As a result,∣∣∣∣E [Rm]− eNrf

τ − ϕ(τ)

∣∣∣∣ ≈ σR

√
NeµRN

f(x)
. (A.14)

The same reasoning in Example 5.2 implies that the relative efficiency between the

HJ and distribution bound can be approximated by

HJ bound

distribution bound
=

|E[Rm]−Rf |
σ(Rm)Rf

|τ−ϕ(τ)|√
ϕ(τ)(1−ϕ(τ))Rf

(A.15)

(A.14)
≈

√
P(r ≤ x) · (1− P(r ≤ x))

σ(Rm)
× σR

√
NeµRN

f(x)
, (A.16)

where r = logR and x = log Q̃τ . Using the same reasoning as in Example 5.2, the

expression on the right hand side of (A.15) is minimized by choosing x = log Q̃∗
τ s.t.
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P(Rm ≤ Q̃∗
τ ) = 1/2. In that case the relative efficiency equals

√
2πσ2

R

√
NeµRN

2
√
[exp(σ2

RN)− 1] exp(2µRN)
=

1

2

√
2πσ2

RN

exp(σ2
RN)− 1

.

A.8 Distribution Bound with Pareto Distribution

This section derives an explicit expression of the distribution bound when the return

and SDF follow the Pareto distribution.

Example A.1 (Pareto distribution). Let U ∼ Unif [0, 1] (Uniform distribution on

[0,1]) and consider the following specification:

M = AUα, Rm = BU−β with α, β,A,B > 0. (A.17)

A random variable X ∼ Par (C, ζ) follows a Pareto distribution with scale parameter

C > 0 and shape parameter ζ > 0 if the CDF is given by

P(X ≤ x) =

1− (x/C)
−ζ

x ≥ C

0 x < C.

The assumption (A.17) implies that returns follow a Pareto distribution, both under

the physical and risk-neutral measures. This fact allows me to obtain an explicit ex-

pression for the distribution bound. I summarize these properties in the Proposition

below.

Proposition A.8. Let the SDF and return be given by (A.17). Then,

(i) Under P, the distribution of returns is Pareto: Rm ∼ Par
(
B, 1

β

)
.

(ii) Under P̃, the distribution of returns is Pareto: Rm ∼ Par
(
B, α+1

β

)
.

(iii) The Sharpe ratio on the asset return is given by

E [Rm]−Rf

σ(Rm)
=

B
1−β − α+1

A√
B2

1−2β −
(

B
1−β

)2 . (A.18)

(iv) The distribution bound is given by

1

Rf

|τ − ϕ(τ)|√
ϕ(τ)(1− ϕ(τ))

=
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

.

(v) If β ↗ 1
2 , the HJ bound converges to 0.
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Proof. See the end of this section. ■

Proposition A.8(iv) shows that the distribution bound is independent of the

Pareto tail index β. Properties (iv) and (v) provide some intuition when the distribu-

tion bound is stronger than the HJ bound. Namely, heavier tails of the distribution

of Rm (as measured by β) lead to a lower Sharpe ratio. However, the distribution

bound is unaffected by β since it only depends on the tail index α. Therefore, when

β gets close to 1/2, the HJ bound is rather uninformative whereas the distribu-

tion bound may fare better. Moreover, no additional restrictions on the parameter

space are necessary to calculate the distribution bound, while the HJ bound requires

β < 1/2.31

Figure A2 shows two instances of the distribution and HJ bound using different

parameter calibrations. Both calibrations are targeted to match an equity premium

of 8% and risk-free rate of 0%, but in Panel A2b, the distribution of returns has

a fatter tail compared to Panel A2a. In both calibrations, the distribution bound

has a range of values for which it is stronger than the HJ bound. In line with

Proposition A.8, we see that the range is larger in Panel (b), since the HJ bound is

less informative owing to the heavier tails of Rm. However, the distribution bound

attains its maximum in the right-tail since that is the region where the physical and

risk-neutral measure differ most. This result is inconsistent with the empirical results

from Table 2, which indicate that the physical and risk-neutral measure are nearly

identical in the right-tail.

Proof of Proposition A.8. (i) The distribution of returns is Pareto, since

P(Rm ≤ x) = P
(
U−β ≤ x/B

)
= P

(
U ≥ (x/B)

− 1
β

)
= 1−

( x

B

)− 1
β

, x ≥ B.

(ii) Since RfM is the Radon-Nikodym derivative that induces a change of measure

31The latter restriction is not unreasonable for asset returns, since typical tail index estimates
suggest β ∈ [1/4, 1/3] (Danielsson and de Vries, 2000).
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(a) β = 0.33 (b) β = 0.45

Figure A2: HJ and distribution bound for heavy tailed returns. Both panels
plot the distribution bound, HJ bound and true SDF volatility for the Pareto model (A.17). In
Panel (b), the distribution of returns has a fatter tail compared to Panel (a). Panel (a) uses
the parameters [A,α,B, β] = [1.19, 0.19, 0.72, 0.33]. Panel (b) uses the parameters [A,α,B, β] =
[1.11, 0.11, 0.59, 0.45]. Both calibrations imply an equity premium of 8% and (net) risk-free rate of
0%.

from P to P̃, it follows that

P̃(Rm ≤ x) = RfE [M1 (Rm ≤ x)]

= Rf

∫ 1

0

Auα
1
(
Bu−β ≤ x

)
du

= RfA

∫ 1

0

uα
1

(
u ≥

( x

B

)− 1
β

)
du

=
RfA

α+ 1

(
1−

( x

B

)−α+1
β

)
= 1−

( x

B

)−α+1
β

.

The last line follows from (A.21) below.

(iii) Routine calculations show that the mean and variance of Rm are given by

(provided β < 1/2)

E [Rm] =
B

1− β
σ2(Rm) =

B2

1− 2β
−
(

B

1− β

)2

. (A.19)

Likewise, the distribution of the SDF follows from

P (M ≤ x) = P (AUα ≤ x) =
( x
A

) 1
α

, 0 ≤ x ≤ A.
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In this case, M is said to have a Pareto lower tail. The expectation is given by

E [M ] =
A

α+ 1
.

The constraint E [MRm] = 1 forces

AB

α− β + 1
= 1. (A.20)

In addition from E [M ] = 1
Rf

it follows that

A

α+ 1
=

1

Rf
. (A.21)

The Sharpe ratio can now be computed from (A.19) and (A.21).

(iv) It is straightforward to show that the quantiles of a Par (C, ζ) distribution are

given by

Qτ = C(1− τ)−1/ζ .

It therefore follows that the risk-neutral quantile function is equal to

Q̃τ = B(1− τ)−
β

α+1 .

As a result

P(Rm ≤ Q̃τ ) = P
(
Rm ≤ B(1− τ)−

β
α+1

)
= 1−

(
B

B(1− τ)
−β
α+1

) 1
β

= 1− (1− τ)
1

α+1 .

Hence, the distribution bound evaluates to

1

Rf

|τ − ϕ(τ)|√
ϕ(τ)(1− ϕ(τ))

=
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

.

(v) The HJ bound, as given by the Sharpe ratio in (A.18), goes to 0 as β ↗ 1/2

since σ(Rm) ↗ ∞. ■

A.9 Derivation of Gâteaux Derivative

In this Section I derive (6.3). For ease of exposition, I drop the time subscripts. For

λ ∈ [0, 1], define F̃λ := (1 − λ)F̃ + λF . The following (trivial) identity will prove
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helpful32

τ = F̃λF̃
−1
λ . (A.22)

To further simplify notation, write q(λ) := F̃−1
λ . Then (A.22) becomes

τ = (1− λ)F̃ (q(λ)) + λF (q(λ)).

Applying the implicit function theorem, we obtain

q′(λ) = − −F̃ (q(λ)) + F (q(λ))

(1− λ)f̃(q(λ)) + λf(q(λ))
.

Plug in λ = 0 to get

q′(0) = −−F̃ (q(0)) + F (q(0))

f̃(q(0))
. (A.23)

Notice that

F̃λ

∣∣
λ=0

= F̃ =⇒ q(λ)
∣∣
λ=0

= q(0) = F̃−1. (A.24)

Substitute (A.24) into (A.23) to obtain

q′(0) = −−F̃ (F̃−1) + F (F̃−1)

f̃(F̃−1)
=

τ − F (F̃−1)

f̃(F̃−1)
. (A.25)

Notice that q′(0) is exactly equal to the Gâteaux derivative from the definition in

(6.2), since
∂

∂λ
φ
[
(1− λ)F̃ + λF

] ∣∣∣∣
λ=0

=
∂

∂λ
q(λ)

∣∣∣∣
λ=0

= q′(0).

A.10 Proof of Proposition 6.4

In the proofs that follow, I repeatedly use Taylor’s theorem with integral remainder,

which is stated for completeness.

Lemma A.9 (Taylor’s theorem). Let ζ(3)(·) be absolutely continuous on the closed

interval between a and x, then

ζ(x) =

3∑
k=0

ζ(k)(a)

k!
(x− a)k +

∫ x

a

ζ(4)(t)

3!
(x− t)3 dt.

The proof of Proposition 6.4 proceeds in several stages, by first proving an infea-

sible lower bound on τ − Ft(Q̃t,τ ), which is later refined into a feasible lower bound

under additional assumptions. Before doing so, I collect several results about the

SDF in representative agent models.

32This “equality” may actually only be an inequality for some τ , but this is immaterial to the
argument.
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Lemma A.10. Assume a representative agent model with SDF given by (6.5), then

τ − Ft(Q̃t,τ ) = −
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
Ẽt [ζ(Rm,t→N )]

, (A.26)

where ζ(·) is defined in (6.6).

Proof. Use the reciprocal of the SDF to pass from physical to risk-neutral measure

Ft(Q̃t,τ ) = Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
= Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

) Et [Mt→N ]

Mt→N

]
= C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,
Et [Mt→N ]

Mt→N

]
+ τ. (A.27)

Rearranging the above and using the definition of ζ(·) in (6.6), as well as (6.5), we

obtain (A.26). ■

Lemma A.11. Under Assumption 6.2,

Ẽt [ζ(Rm,t→N )] ≤
3∑

k=0

θkM̃(k)
t→N = 1 +

3∑
k=1

θkM̃(k)
t→N ,

where ζ(x) is the IMRS defined in (6.6).

Proof. In the integral of Lemma A.9, substitute s = (t− a)/(x− a) to get

ζ(x) =

3∑
k=0

ζ(k)(a)

k!
(x− a)k + (x− a)4

∫ 1

0

ζ(4)(a+ s(x− a))

3!
(1− s)

3
ds

≤
3∑

k=0

ζ(k)(a)

k!
(x− a)k,

since ζ(4)(x) < 0 by Assumption 6.2(ii). Using this result with a = Rf,t→N and

taking expectations, we obtain

Ẽt [ζ(Rm,t→N )] ≤
3∑

k=0

θkM̃(k)
t→N . ■

Under Assumption 6.2, the difference between the physical and risk-neutral dis-

tribution in the left-tail can be bounded as follows.

Theorem A.12 (Infeasible Lower Bound). Let Assumption 6.2 hold and assume

that the risk-neutral CDF is absolutely continuous with respect to Lebesgue measure.

Define τ∗ so that G(Q̃t,τ∗) = Ẽt (G(Rm,t→N )), where

G(Rm,t→N ) :=

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt.
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Then for all τ ≤ τ∗,

τ − Ft

(
Q̃t,τ

)
≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

, (A.28)

where M̃(k)
t→N , M̃(k)

t→N [Q̃t,τ ] are defined in (6.7).

Proof of Theorem A.12. By Taylor’s theorem,

− C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
=

3∑
k=1

θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
− C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,
1

3!

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]

≥
3∑

k=1

θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
.

(A.29)

The last line follows from Lemma A.13 below. Hence,

τ − Ft(Q̃t,τ ) = −
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
Ẽt [ζ(Rm,t→N )]

≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

,

where the first identity follows from Lemma A.10 and the inequality follows from

(A.29) and Lemma A.11. ■

Remark 6. The condition that τ ≤ τ∗ is sufficient but not necessary, as the proof of

Theorem A.12 shows. Furthermore, the proof also shows that τ∗ > 0 exists regardless

of the utility function. In practice, however, τ∗ is unknown since G(·) depends on

the unknown utility function of the representative agent. Appendix D.5 shows that

τ∗ ≈ 0.5 in the data for CRRA utility and different levels of risk aversion. In light of

this result, it seems that τ ∈ {0.05, 0.1, 0.2} is sufficiently conservative for the lower

bound to hold, and I use these values in the empirical application in Section 6.4.

Lemma A.13. Suppose that Assumption 6.2 holds. In addition, define τ∗ so that

G(Q̃t,τ∗) = Ẽt (G(Rm,t→N )), where

G(Rm,t→N ) :=

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt.
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Then for all τ ≤ τ∗,

C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]
≤ 0. (A.30)

Proof. If ζ(4) ≡ 0, then (A.30) trivially holds. Hence, assume that ζ(4) is not iden-

tically equal to zero. First we show that G(Rm,t→N ) is increasing on (0, Rf,t→N ),

since by Leibniz’ rule

G′(Rm,t→N ) = −3

∫ Rf,t→N

Rm,t→N

ζ(4)(t)(Rm,t→N − t)2 dt ≥ 0.

The inequality follows since ζ(4)(t) < 0 by Assumption 6.2(ii). Temporarily write

K = Q̃t,τ to ease notation and consider

Γ(K) = C̃OVt

[
1 (Rm,t→N ≤ K) ,

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]
.

By Leibniz’ rule again, we get

Γ′(K) = f̃t(K)
(
G(K)− Ẽt (G(Rm,t→N ))

)
.

Since G(Rf,t→N ) = 0, G(Rm,t→N ) ≤ 0 and G(Rm,t→N ) is increasing on (0, Rf,t→N ),

we know that Γ′(K) ≤ 0 for all K ≤ K∗ < Rf,t→N , where K∗ is defined such

that G(K∗) = Ẽt (G(Rm,t→N )). To complete the proof, define τ∗ so that it satisfies

Q̃τ∗ = K∗. ■

Remark 7. The bound in (A.28) is infeasible since {θk}3k=1 is unknown.33 However,

Chabi-Yo and Loudis (2020) show that these unknowns relate to the coefficient of

relative risk aversion, relative prudence and relative temperance of the representative

agent. Based on this observation and using results from the expected utility literature

(Eeckhoudt and Schlesinger, 2006), the authors propose an additional restriction on

θk that allows me to prove the feasible lower bound in Proposition 6.4.

Proof of Proposition 6.4. Using Assumption 6.3(i) and 6.3(ii), we get θ2M̃(2)
t→N ≤

−1/R2
f,t→NM̃(2)

t→N and θ3M̃(3)
t→N ≤ 1/R3

f,t→NM̃(3)
t→N , from which it follows that

1 +

3∑
k=1

θkM̃(k)
t→N ≤ 1− 1

R2
f,t→N

M̃(2)
t→N +

1

R3
f,t→N

M̃(3)
t→N . (A.31)

33In Appendix E, I use comparative statics for common utility functions to analyze the tail
difference between the physical and risk-neutral distribution.
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Second, recall that for K > 0

F̃t(K)M̃(k)
t→N − M̃(k)

t→N [K] = −C̃OVt

[
1 (Rm,t→N ≤ K) , (Rm,t→N −Rf,t→N )k

]
.

If k = 1, 3, then Chebyshev’s sum inequality E.1 implies that

Γ(K) := C̃OVt

[
1 (Rm,t→N ≤ K) , (Rm,t→N −Rf,t→N )k

]
≤ 0.

Hence under Assumption 6.3(i),

θk

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
≥ 1

Rk
f,t→N

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
for k = 1, 3.

(A.32)

If k = 2, we obtain from Leibniz’ rule

Γ′(K) = f̃t(K)
[
(K −Rf,t→N )2 − ṼARt(Rm,t→N )

]
. (A.33)

It follows that (A.33) is positive if K ≤ Rf,t→N −
√

ṼARt(Rm,t→N ) =: K∗∗. Com-

bining (A.32) and (A.33), we get for K ≤ K∗∗

θk

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
≥ (−1)k+1

Rk
f,t→N

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
. (A.34)

Collecting the results from (A.31) and (A.34) and using the general upper bound

(A.28) from Theorem A.12, it follows that

τ − Ft

(
Q̃t,τ

) (A.28)

≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

≥

∑3
k=1

(−1)k−1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k−1

Rk
f,t→N

M̃(k)
t→N

,

for all τ such that Q̃t,τ ≤ min(K∗,K∗∗), where K∗ is defined in Theorem A.12. ■

Remark 8. The bound only holds for quantiles far enough in the left-tail. Compared

to Theorem A.12, the additional condition needed for the bound to hold is that

Q̃t,τ ≤ Rf,t→N −
√

ṼARt(Rm,t→N ), which covers a wide range of quantiles in the

left-tail, since in the data

√
ṼARt(Rm,t→N ) is in the order of 10−3 for 90-day returns,

whereas the risk-free rate is typically around 1.34

34At the 30- and 60-day horizon, the risk-neutral standard deviation is even smaller.
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A.11 Formulas for market moments

This Section presents formulas for the (un)truncated risk-neutral moments of the

excess market return. I use a slight abuse of notation and write Q̃(τ) := Q̃τ (Rm,t→N ),

to emphasize that the integrals below are taken with respect to τ .

Proposition A.14. Any risk-neutral moment can be computed from the risk-neutral

quantile function, since

Ẽt [(Rm,t→N −Rf,t→N )n] =

∫ 1

0

[Q̃τ (Rm,t→N−Rf,t→N )]n dτ =

∫ 1

0

[Q̃(τ)−Rf,t→N ]n dτ.

(A.35)

Moreover, any truncated risk-neutral moment can be calculated by

Ẽt [(Rm,t→N −Rf,t→N )n1 (Rm,t→N ≤ k0)] =

∫ F̃t(k0)

0

[Q̃(τ)−Rf,t→N ]n dτ.

Proof. For any random variable X and integer n such that the n-th moment exists,

we have

E [Xn] =

∫ 1

0

[QX(τ)]n dτ.

This follows straightforward from the substitution x = Q(τ). Now use that for any

constant a ∈ R, QX−a(τ) = QX(τ) − a to derive (A.35). The truncated formula

follows similarly. ■

Remark 9. Frequently I use k0 = Q̃τ , in which case the truncated moment formula

reduces to

Ẽt

[
(Rm,t→N −Rf,t→N )n1

(
Rm,t→N ≤ Q̃τ

)]
=

∫ τ

0

[Q̃(p)−Rf,t→N ]n dp.

B Risk-Neutral Quantile Regression: Robustness

and Departure from Conditional Lognormality

B.1 Linear versus Non-linear Model: Out-of-Sample Fore-

casting Accuracy

This section explores alternative specifications to the linear quantile model presented

in (2.3), focusing only on 30-day returns. The findings for longer time horizons are

very similar and omitted for parsimony. Specifically, I consider the addition of higher-

order terms to the linear model, such as:

Qt,τ = β0(τ) + β1(τ)Q̃t,τ + β2(τ)Q̃
2
t,τ . (B.1)
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To evaluate the performance of the non-linear model in (B.1) vs. the linear model

in (2.3), I recursively estimate the model parameters based on an expanding window,

starting at January 2, 2003. The first sub-sample ends at August 15, 2012 and I

increase the sample size on a monthly basis. For each sub-sample, I calculate the

out-of-sample forecasting accuracy using the formula:

1

#t

∑
t

ρτ (Rm,t→N − Q̂t,τ ), (B.2)

where Q̂t,τ is the predicted physical quantile based on the parameters estimated from

the sub-sample. The summation includes all dates that are at least one month ahead

of the end of the sub-sample period.

Figure B3 shows the out-of-sample loss at various percentiles. In most cases, the

linear model outperforms the quadratic model, with some exceptions observed at the

95th percentile during specific periods. These results continue to hold when adding

other non-linear terms, such as cubic, exponential or logarithmic factors. Addition-

ally, I find that the risk-neutral quantile function exhibits a high correlation with

higher-order terms. Consequently, the non-linear model tends to produce quantile

forecasts that closely resemble those generated by the linear model.

B.2 Additional Evidence Against the Lognormal Assumption

Table 2 already indicates evidence against the lognormal model since the QR esti-

mates in the left- and right-tail are rather different, in contradiction with (4.4). To

further assess the implications of the lognormal model, I analyze the accuracy of the

physical quantile forecast in (4.5) out-of-sample. Specifically, I use QR based on the

first t0 observations to estimate the model

Qt,τ (Rm,t→N ) = β̂0,t0(τ) + β̂1,t0(τ)Q̃t,τ , (B.3)

where the t0-subscript in β·,t0 refers to the fact that the coefficients are estimated

using observations up to time t0. Using an expanding window to estimate β·,t0 , the

model produces dynamic quantile forecasts of the form

Q̂logn
t,τ = β̂0,t(τ) + β̂1,t(τ)Q̃t,τ . (B.4)

In the lognormal case, Proposition 4.1(ii) suggests that Qt,τ (Rm,t→N ) ≈ Q̂logn
t,τ . This

approximation can be tested using the joint restriction

H0 : [β0(τ), β1(τ)] = [0, 1],
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Figure B3: Out-of-sample quantile forecasting loss. These figures show the out-of-
sample loss of forecasting the physical quantile function, based on an expanding window. The loss
at different percentiles is calculated by (B.2).

in the quantile regression

min
β0,β1∈R

∑
t

ρτ

(
Rm,t→N − β0 − β1Q̂

logn
t,τ

)
.

The results are summarized in Table B1 and show that the point estimates are

quite far from the [0, 1] benchmark. The Wald test on the joint restriction tends

to reject H0 far enough in the tail, but for τ = 0.2 the null hypothesis is never

rejected due to the large standard errors. Additionally, the R1(τ) statistic shows

that the explanatory power is low relative to Table 2, even though the sample sizes

are different. Hence, the results are incompatible with (4.4) and (4.5) and provide

evidence against the conditional lognormal assumption, which is in line with evidence

from the literature (see e.g. Martin (2017, Result 4)).
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Table B1: Expanding quantile prediction with risk-neutral quantile

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] Obs

30 days 0.05 0.54
(0.185)

0.42
(0.193)

0.00 4.36 3804

0.1 0.59
(0.205)

0.39
(0.212)

0.01 2.39

0.2 0.83
(0.332)

0.15
(0.338)

0.04 0.28

60 days 0.05 0.55
(0.310)

0.39
(0.329)

0.06 1.84 3753

0.1 0.80
(0.339)

0.16
(0.352)

0.03 0.22

0.2 0.87
(0.416)

0.11
(0.425)

0.10 0.25

90 days 0.05 0.78
(0.335)

0.11
(0.358)

0.01 0.88 3702

0.1 0.74
(0.376)

0.21
(0.395)

0.08 1.34

0.2 0.73
(0.481)

0.26
(0.491)

0.31 0.52

Note: This table reports the QR estimates of (B.4) using an expanding win-
dow based on an initial 500 observations. The sample period is 2003-2021.
Wald test denotes the p-value of the joint restriction [β0(τ), β1(τ)] = [0, 1].
Standard errors are reported in parentheses and calculated using the SETBB
with a block length equal to the prediction horizon. R1(τ) denotes the good-
ness of fit measure (2.5).

C Estimating the Risk-Neutral Quantile Function

C.1 Data Description

To estimate the risk-neutral quantile function at each time point, I use daily option

prices from OptionMetrics, covering the period from January 1, 1996, to December

31, 2021. These options include European Put and Call options on the S&P500

index. The option contracts provide data on the highest closing bid, lowest clos-

ing ask price, and the price of the forward contract on the underlying security. To

approximate the unobserved option price, I use the midpoint between the bid and

ask prices. Additionally, I gather daily risk-free rate data from Kenneth French’s

website.35 Finally, I obtain stock price data on the closing price of the S&P500 from

WRDS.

I implement an additional data cleaning procedure for the option data before

estimating the martingale measure. Firstly, I exclude all observations where the

highest closing bid price is zero. Additionally, I remove option prices that violate no-

35See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#

Research

73

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research


arbitrage bounds. Subsequently, I filter out option prices with maturities less than

7 days or greater than 500 days. Following this cleaning process, I retain 23,264,113

option-day observations.

For the quantile regression application, I exclude all observations before 2003.

During the period from 1996 to 2003, there are many days with insufficient option

data to estimate Q̃t,τ at the 30-, 60-, and 90-day horizons. I also discard days in the

post-2003 period when I cannot estimate the risk-neutral quantile, although this is

a rare occurrence, accounting for approximately 2% of the total days. Most of these

instances are concentrated at the beginning of the sample period.

C.2 Estimation Procedure

There is a substantial literature on how to extract the martingale measure from

option prices. I use the RND Fitting Tool application on MATLAB, which is de-

veloped by Barletta and Santucci de Magistris (2018).36. The tool is based on the

orthogonal polynomial expansion of Filipović et al. (2013). In short, the idea is to

approximate the conditional risk-neutral density function by an expansion of the

form

f̃t(x) ≈ ϕ(x)

[
1 +

K∑
k=1

k∑
i=0

ckwi,kx
k

]
,

where ϕ(x) is an arbitrary density and the polynomial term serves to tilt the density

function towards the risk-neutral distribution. Further details about the estimation

of the coefficients wi,k and ck can be found in Filipović et al. (2013).

For my purpose, I need to choose the kernel function ϕ(·), the estimation method

for ck and the degree of the expansion K. I follow the recommendation of Barletta

and Santucci de Magistris (2018) and use the double beta distribution for the kernel

and principal component analysis to estimate ck. This is the most robust method

for S&P500 options. To avoid overfitting, I use K = 3 if the number of option data

is less than 70, K = 6 if the number is less than 100 and K = 8 otherwise. This

choice renders a good approximation for most time periods.

I interpolate the estimated risk-neutral densities for a given time horizon. Occa-

sionally, there are no two interpolation points. In such cases, I drop the observations

to avoid negative density estimates due to extrapolation. Since the RND Fitting

Tool is designed for an equal number of put and call options, I use Put-Call parity

to convert in-the-money call prices to put prices and vice versa. Subsequently, I use

36The application can be downloaded from the author’s GITHUB page: https://github.com/

abarletta/rndfittool
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Black-Scholes implied volatilities to interpolate the Call-Put option price curve near

the forward price. This transformation ensures that the risk-neutral density does not

have a discontinuity for strike prices that are close to being at-the-money (Figlewski,

2010). Finally, I integrate the density function and take the inverse to obtain the

risk-neutral quantile function:

Q̃t,τ := inf
{
x ∈ R : τ ≤ F̃t(x)

}
, where F̃t(x) =

∫ x

0

f̃t(y) dy.

D Verifying Assumption 6.2(ii) in Representative

Agent Models

The proof of Theorem A.12 relies on Assumption 6.2(ii). This section derives param-

eter restrictions for common utility functions that are needed so that Assumption

6.2(ii) is satisfied. Most of these restrictions resemble those of Chabi-Yo and Loudis

(2020). I also illustrate the lower bound with actual data assuming CRRA utility.

D.1 Log utility

In this case u(x) = log x. It follows that ζ(x) = x/Rf,t→N . Clearly ζ(4)(x) = 0 and

Assumption 6.2 holds.

D.2 CRRA utility

More generally, consider u(x) = x1−γ

1−γ for γ ≥ 0. It follows that ζ(x) = ( x
Rf,t→N

)γ

and hence

ζ(4)(x) =
1

Rγ
f,t→N

γ(γ − 1)(γ − 2)(γ − 3)xγ−4.

Part (ii) of Assumption 6.2 holds if γ ∈ [0, 1], but also if γ ∈ [2, 3]. Notice that

the additional restrictions in the feasible lower bound in Proposition 6.4 cannot be

accommodated by this model. To see this, observe that θ2 ≤ −1/R2
f,t→N implies that

γ(γ − 1)/2 ≤ −1/R2
f,t→N , which cannot hold for any reasonable interest rate. This

failure illustrates that a representative agent model with CRRA utility is misspecified

in that it cannot produce a sizable risk-premium on skewness.37

D.3 CARA utility

In this case, u(x) = 1 − e−γx and ζ(x) = eγ
∗(x−Rf,t→N ), where γ∗ = Wtγ. Since

ζ(4) > 0, Assumption 6.2 does not hold.

37See in particular Chabi-Yo and Loudis (2020, Equation (A.5)), which shows that θ2 is related
to the risk-premium on market skewness.
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D.4 HARA utility

The utility function is given by u(x) = 1−γ
γ

(
ax
1−γ + b

)γ
, where a > 0 and ax

1−γ+b > 0.

Successive differentiation renders

ζ(4)(x) =
−γ(γ + 1)(γ + 2)(aWt)

4
(

aWtx
1−γ + b

)−γ−3 (
aWtRf,t→N

1−γ + b
)γ−1

(1− γ)3
.

We see that γ ∈ [0, 1) is a sufficient condition for ζ(4)(x) ≤ 0.

D.5 Lower Bound in the Data for CRRA utility

Figure D4 illustrates the infeasible lower bound as well as the quantile approximation

for CRRA utility with different levels of risk aversion. The risk-neutral distribution

is obtained from option data over a 90-day horizon on October 28, 2015. Panels

D4a and D4c show the infeasible lower bound from Theorem A.12 when risk aver-

sion is 2.2 and 2.9 respectively. Consistent with the theorem, the infeasible lower

bound is below τ − Ft(Q̃t,τ ) in the left-tail, and seems to hold for a large range of

τ ’s, in particular for all τ ≤ 0.5. The right panels show the quantile approximation

(6.9) based on the infeasible lower bound. We see that the risk-adjusted quantile

approximation comes much closer to the physical quantile relative to the risk-neutral

quantile function.

E Disaster Probability in Representative Agent Mod-

els

In this section, I derive results regarding conditional tail probabilities in represen-

tative agent models. I demonstrate how these probabilities can be computed using

common utility functions and analyze their sensitivity to changes in underlying pa-

rameters (comparative statics). These results do not hinge on specific assumptions

about the market return distribution and extend existing findings in the literature,

which often rely on log-normality assumptions.

E.1 Log Utility

Chabi-Yo and Loudis (2020, Remark 1) show that their bounds on the equity pre-

mium equal the bounds of Martin (2017) when the representative agent has log

preferences. Here, I derive the analogous result for the subjective crash probability

of a log investor reported by Martin (2017, Result 2). In our notation, Martin (2017)
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(a) Infeasible lower bound, γ = 2.2 (b) Quantile function, γ = 2.2

(c) Infeasible lower bound, γ = 2.9 (d) Quantile function, γ = 2.9

Figure D4: Lower bound with CRRA utility for 90-day returns. This figure

shows the lower bound on τ−Ft(Q̃t,τ ) as well as the quantile approximation Qt,τ ≈ Q̃t,τ +LBt,τ in
a representative agent model with CRRA utility function, u(x) = x1−γ/(1− γ), for γ ∈ {2.2, 2.9}.
The left panels show the infeasible lower bound CLBt,τ , and the true risk-adjustment, τ−Ft(Q̃t,τ ).
The right panels show the physical, risk-neutral and risk-adjusted quantile functions. The risk-
adjusted quantile function uses the infeasible lower bound. The risk-neutral distribution is coming
from option data on the S&P500 on October 28, 2015 with a maturity of 90 days.

shows that

Pt (Rm,t→N < α) = α

[
Put′t(αSt)−

Putt(αSt)

αSt

]
, (E.1)
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where Put′t is the derivative of the put option price curve seen as a function of the

strike. Under log preferences and using (A.27), it follows that

Pt(Rm,t→N < Q̃t,τ ) = τ +
1

Rf,t→N
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, Rm,t→N

]
= τ +

1

Rf,t→N

(
Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
Rm,t→N

]
− Ẽt(Rm,t→N )Ẽt

(
1

(
Rm,t→N ≤ Q̃t,τ

)))
=

1

Rf,t→N
Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
Rm,t→N

]
. (E.2)

The result now follows upon substituting Q̃τ = α, since Martin (2017) shows that

(E.2) equals the right hand side of (E.1).

E.2 CRRA Utility

I now consider the case in which the representative agent has constant relative risk

aversion (CRRA) utility, u(x) = x1−γ/(1 − γ), where γ is the relative risk aversion

parameter. First, I show that the excess market return is non-decreasing in γ re-

gardless of the distribution of the market return.38 Next, I extend the argument to

show that the difference between the physical and risk-neutral measures increases at

every point within their support. The proofs rely on the following lemma, which is

a special case of the FKG inequality (Hsu and Varadhan, 1999, Theorem 1.3).

Lemma E.1 (Chebyshev sum inequality). Let X be a random variable and let g, h

both be non-increasing or non-decreasing. Then,

E (g(X)h(X)) ≥ E (g(X))E (h(X)) .

The inequality is reversed if one is non-increasing and the other is non-decreasing.

Proof. Let X1, X2 be iid copies of X and assume that g, h are non-decreasing. It

follows that

(g(X1)− g(X2)) (h(X1)− h(X2)) ≥ 0. (E.3)

Taking expectations on both sides completes the proof. The same proof goes through

if g, h are non-increasing. If one is non-increasing and the other is non-decreasing,

the inequality in (E.3) is reversed. ■

Proposition E.2. Assume that a representative investor has CRRA utility, with

γ ≥ 0 and Et

[
Rγ+1

m,t→N logRm,t→N

]
< ∞. Then, Et [Rm,t→N ] − Rf,t→N , is non-

decreasing in γ.

Remark 10. I suppress the dependence of the physical expectation on γ in the nota-

tion for readability.
38Cochrane (2005) derives this result when the distribution is lognormal.
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Proof. According to Chabi-Yo and Loudis (2020, Equation (53)), we have

Et [Rm,t→N ]−Rf,t→N =
Ẽt

[
Rγ+1

m,t→N

]
Ẽt

[
Rγ

m,t→N

] −Rf,t→N =: g(γ).

It is enough to show that g′(γ) ≥ 0 for γ ≥ 0. Taking first order conditions, we need

to show that

Ẽt

[
Rγ+1

m,t→N logRm,t→N

]
Ẽt

[
Rγ

m,t→N

]
≥ Ẽt

[
Rγ+1

m,t→N

]
Ẽt

[
Rγ

m,t→N logRm,t→N

]
.

(E.4)

Introduce another probability measure P∗, defined by

E∗
t [Z] :=

Ẽt

[
ZRγ

m,t→N

]
Ẽt

[
Rγ

m,t→N

] . (E.5)

We can rewrite (E.4) into

E∗
t

[
Rγ

m,t→N logRm,t→N

]
≥ E∗

t

[
Rγ

m,t→N

]
E∗
t [logRm,t→N ] . (E.6)

Inequality (E.6) now follows from Lemma E.1. ■

I mimic the steps above to show that the physical distribution differs more from

the risk-neutral distribution at every point in the support, whenever risk aversion is

increasing. As before, the dependence of the physical measure on γ is omitted.

Proposition E.3. Assume that a representative investor has CRRA utility, with

γ ≥ 0 and Et

[
Rγ

m,t→N logRm,t→N

]
< ∞, then Ft(x) is non-increasing in γ. In

particular, τ − Ft(Q̃t,τ ) is non-decreasing in γ.

Proof. I start from the relation

Ft(x) = Ẽt

 Rγ
m,t→N

Ẽt

[
Rγ

m,t→N

]1 (Rm,t→N ≤ x)

 .

From first order conditions, we need to show that

Ẽt

[
log(Rm,t→N )1 (Rm,t→N ≤ x)Rγ

m,t→N

]
Ẽt

[
Rγ

m,t→N

]
≤

Ẽt

[
Rγ

m,t→N1 (Rm,t→N ≤ x)
]
Ẽt

[
log(Rm,t→N )Rγ

m,t→N

]
.

Using the same change of measure as in (E.5), we obtain the equivalent statement

E∗
t [log(Rm,t→N )1 (Rm,t→N ≤ x)] ≤ E∗

t [1 (Rm,t→N ≤ x)]E∗
t [logRm,t→N ] .
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This inequality holds, since log(y) and 1 (y ≤ x) are respectively increasing and non-

increasing in y, hence the result follows from Lemma E.1. Using the substitution

x → Q̃t,τ , it follows that τ − Ft(Q̃t,τ ), is non-decreasing in γ. ■

E.3 Exponential utility

Here, I assume that the representative agent has exponential utility, u(x) = 1−e−γ∗x,

where γ∗ is the absolute risk aversion. According to Chabi-Yo and Loudis (2020,

Equation (55)), the following expression for the equity premium obtains

Et [Rm,t→N ]−Rf,t→N =
Ẽt

[
Rm,t→NeγRm,t→N

]
Ẽt [eγRm,t→N ]

−Rf,t→N ,

where γ = γ∗Wt is relative risk aversion and Wt represents the agent’s wealth at time

t. Since there is a one-to-one relation between γ and γ∗, it follows from the results

in Section E.2 that the equity premium is increasing in γ∗, and so is the distance

between the physical and risk-neutral distribution, as measured by: τ − Ft(Q̃t,τ ).

F Lower Bound in the Data and Robustness

F.1 Lower Bound in the Data

In the empirical application, I calculate the lower bound, LBt,τ = CLBt,τ/f̃t(Q̃t,τ ),

for 30-, 60-, and 90-day returns. Summary statistics of LBt,τ are presented in Table

F2. The lower bound is right-skewed and is most significant at the 5th and 10th

percentile. Moreover, over the 30-day horizon, it can reach as high as 25% and

maintains an average of approximately 1% in the far left-tail.

F.2 Robustness of the Lower Bound and Risk-neutral Quan-

tile

The lower bound, LBt,τ , tries to capture the difference between the physical and

risk-neutral quantile functions in the left-tail. What are some other measures that

are available at a daily frequency and contain information about the quantile wedge?

One candidate is the VIX index, which is defined as

VIX2
t =

2Rf,t→N

N

[∫ Ft

0

1

K2
Putt(K) dK +

∫ ∞

Ft

1

K2
Callt(K) dK

]
,

where Ft is the forward price on the S&P500, and Putt(K) (resp. Callt(K)) is the

put (resp. call) option price on the S&500 with strike K. Martin (2017) shows that
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Table F2: Summary statistics of lower bound

Horizon τ Mean Median Std. dev. Min Max

30 days 0.05 0.92 0.63 1.07 0.08 24.38
0.1 0.70 0.45 0.87 0.06 12.22
0.2 0.47 0.25 0.74 0.04 10.93

60 days 0.05 1.81 1.31 1.67 0.10 19.23
0.1 1.71 1.19 1.66 0.25 19.89
0.2 1.14 0.69 1.50 0.12 23.57

90 days 0.05 2.65 2.02 2.02 0.02 18.63
0.1 2.86 2.12 2.32 0.04 24.47
0.2 1.97 1.22 2.33 0.26 28.92

Note: This table reports summary statistics of the lower bound, LBt,τ =

CLBt,τ/f̃t(Q̃t,τ ), in (6.13) at different time horizons and different quantile
levels over the sample period 2003-2021. All statistics are in percentage
point.

VIX measures risk-neutral entropy

VIX2
t =

2

N
L̃t

(
Rm,t→N

Rf,t→N

)
,

where entropy is defined as L̃t(X) := log Ẽt [X]− Ẽt [logX]. Entropy, just like vari-

ance, is a measure of spread in the distribution. However, entropy places more

weight on left-tail events than variance, since entropy places more weight on out-of-

the money put options. As such, VIX is a natural candidate to explain potential

differences between Qt,τ and Q̃t,τ . Second, the Chicago Board Options Exchange

provides daily data on VIX at the 30-day horizon.

Table F3 shows the result of the quantile regression

Qt,τ (Rm,t→N )− Q̃t,τ (Rm,t→N ) = β0(τ) + β1(τ)LBt,τ + βVIX(τ)VIXt. (F.1)

We see that βVIX is marginally significant in the left-tail. In contrast, β1(τ) is even

more significant compared to Table 5. Furthermore, the explanatory power of the

model that only includes VIX is lower compared to the model that only includes

LBt,τ (see Table 5).

As a second robustness check, I consider how well the direct quantile forecast,

Q̂t,τ = Q̃t,τ + LBt,τ , compares to the VIX forecast. Since Q̂t,τ does not require

any parameter estimation, this exercise is a measure of out-of-sample performance.

However, VIX does not directly measureQt,τ and hence I use an expanding window to
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Table F3: Quantile regression using Lower Bound and VIX

β̂0(τ) β̂1(τ) β̂VIX(τ) R1(τ)[%] R1(τ)[%]
(VIX only)

τ = 0.05 -0.20
(1.889)

10.09
(0.319)

-0.30
(0.130)

6.34 5.51

τ = 0.1 -0.35
(1.313)

5.06
(0.302)

-0.22
(0.089)

3.41 2.84

τ = 0.2 -0.28
(0.955)

3.62
(0.256)

-0.25
(0.068)

0.61 0.18

Note: This table reports the QR estimates of (F.1) over the 30-day hori-
zon. The sample period is 2003-2021, standard errors are shown in paren-
theses and calculated using SETBB with a block length equal to the fore-
cast horizon. R1(τ) denotes the goodness-of-fit measure (2.5). The last
column denotes the goodness-of-fit in the model that only uses VIX as
covariate. The standard error and point estimate of β0 is multiplied by
100 for readability.

obtain the VIX benchmark: Q̂VIX
t,τ := β̂0(τ) + β̂1(τ)VIXt. Finally, I use the following

out-of-sample metric to compare both forecasts

R1
oos(τ) = 1−

T∑
t=500

ρτ (Rm,t→N − Q̂t,τ )/

T∑
t=500

ρτ (Rm,t→N − Q̂VIX
t,τ ).

Notice that R1
oos(τ) > 0, if Q̂t,τ attains a lower error than Q̂VIX

t,τ . This exercise is

more ambitious, since Q̂VIX
t,τ makes use of in-sample information. Nonetheless, Figure

F5 shows that Q̂t,τ outperforms the VIX predictor at all percentiles.

Figure F6 performs a similar exercise in the right-tail, but using Q̃t,τ instead

of Q̂t,τ , since Table 2 shows that the risk-neutral quantile is a good approximation

to Qt,τ in the right-tail. We see that Q̃t,τ outperforms Q̂VIX
t,τ at all quantile levels.

Hence, the risk-neutral approximation in the right-tail is more accurate than using

the in-sample VIX measure.

F.3 Measurement Error Bias in Quantile Regression

In the empirical application, we have to estimate Q̃t,τ , f̃(·) and CLBt,τ from market

data. Therefore, the estimated coefficients in the quantile regression are biased due

to measurement error in the covariate. I present simulation evidence which shows

that the bias is small in finite samples.

The setup is as follows. I simulate returns and option prices according to a

82



(a) τ = 0.05

(b) τ = 0.1 (c) τ = 0.2

Figure F5: Out-of-sample forecast using risk-adjusted quantile with VIX
benchmark. This figure shows the cumulative out-of sample R1(τ), defined as R1

oos(τ) =

1−
∑T

t=500 ρτ (Rm,t→N −Q̂t,τ )/
∑T

t=500 ρτ (Rm,t→N −Q̂VIX
t,τ ), where Q̂t,τ = Q̃t,τ +LBt,τ , Q̂VIX

t,τ =

β̂0(τ) + β̂1(τ) · VIXt, and β̂0(τ), β̂1(τ) are the regression estimates from a quantile regression of
Rm,t→N on VIXt, using data only up to time t. The horizon is 30 days and the QR estimates are
dynamically updated using an expanding window over the period 2003–2021. The initial sample
uses 500 observations.

discretized version of the Black and Scholes (1973) model:

Rm,t→N = exp

(
(µt −

1

2
σ2
t )N + σt

√
NZt+N

)
, Zt+N ∼ N (0, 1) (F.2)

σt ∼ Unif [0.05, 0.35]

µt ∼ Unif [−0.02, 0.2] .

The return distribution under risk-neutral dynamics is given by

R̃m,t→N = exp

(
(rt −

1

2
σ2
t )N + σt

√
NZt+N

)
(F.3)

rt ∼ Unif [0, 0.03] . (F.4)

I calculate the lower bound assuming a return horizon of 90 days. As in the
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(a) τ = 0.7 (b) τ = 0.8

(c) τ = 0.9 (d) τ = 0.95

Figure F6: Out-of-sample forecast using risk-neutral quantile with VIX
benchmark. This figure shows the cumulative out-of sample R1(τ), defined as R1

oos(τ) =

1−
∑T

t=500 ρτ (Rm,t→N − Q̃t,τ )/
∑T

t=500 ρτ (Rm,t→N − Q̂VIX
t,τ ), where Q̂VIX

t,τ = β̂0(τ)+ β̂1(τ) ·VIXt,

and β̂0(τ), β̂1(τ) are the regression estimates from a quantile regression of Rm,t→N on VIXt, using
data only up to time t. The horizon is 30 days and the QR estimates are dynamically updated
using an expanding window over the period 2003–2021. The initial sample uses 500 observations.

empirical application, I assume that options with an exact 90-day maturity are not

available, but instead we observe options with maturity 85 and 97 days. I generate

a total of 1,000 options every time period with maturities randomly sampled from

85 and 97 days.39 These numbers are roughly consistent with the latter part of the

empirical sample. The procedure is repeated for a total of 1,000 time periods. For

the entire sample, I compare the estimated and analytical lower bound, which are

given by respectively

LBe
t,τ :=

̂̃
Qt,τ +

ĈLBt,τ˜̂ft(Q̃t,τ )

LBa
t,τ := Q̃t,τ +

CLBt,τ

f̃t(Q̃t,τ )
.

39So on average there will 500 options with maturity 85 days and 500 with maturity 97 days.
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The hats signify that the risk-neutral quantile, PDF and CDF lower bound are

estimated from the available options at time t, using the procedure in Appendix

C.2. The terms in LBa
t,τ are obtained from the known analytical expression of the

risk-neutral distribution (recall (F.3)). I then use QR to estimate the models

Qt,τ = β̂0(τ) + β̂1,e(τ)LB
e
t,τ

Qt,τ = β̂0(τ) + β̂1,a(τ)LB
a
t,τ .

I use the ratio β̂1,e/β̂1,a to measure the relative bias in the sample. This experiment

is repeated 500 times to get a distribution of the relative bias. Figure F7 shows

boxplots of the bias for several quantiles. We see that the relative bias is very small

and centered around 1. Hence, the error in measurement problem resulting from

estimating the lower bound is limited in this case.

Figure F7: Bias in QR resulting from measurement error. This boxplot shows
the relative bias in the quantile regression estimate as a result of measurement error.

G Additional Figures
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Figure G8: Highest existing risk-neutral moment for 30-day returns. This

figure shows p∗t := sup{p : Ẽt

(
Rp

m,t→N

)
< ∞} over time, where Rm,t→N represents

the 30-day return. p∗t is calculated from the moment formula of Lee (2004), p∗t =
1

2βR
+ βR

8 + 1
2 , where βR = lim supx→∞

σ2
IV(x)
|x|/N , σIV(x) is the implied volatility at

log-moneyness x = log(K/(erNS0)), and N = 30/365 is the time horizon. βR is
estimated from the call option with highest available strike price. The figure is
smoothed using a 30-day moving average.
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