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Abstract

We propose a projection method to estimate risk-neutral moments from

option prices. We derive a finite-sample bound implying that the projec-

tion estimator attains (up to a constant) the smallest pricing error within

the span of traded option payoffs. No analogous guarantee is available for

the widely used Carr–Madan approximation. We then extend the frame-

work to multiple underlyings, deriving necessary and sufficient conditions

under which simple options complete the market in higher dimensions, and

providing estimators for joint moments. Simulations demonstrate that the

method remains accurate in sparse-strike settings and in higher dimensions.

In the empirical application, we recover risk-neutral correlations and joint

tail risk from FX options alone, addressing a longstanding measurement

problem raised by Ross (1976). Our joint tail-risk measure predicts future

joint currency crashes and identifies periods in which currency portfolios

are particularly useful for hedging.

1 Introduction

Option prices provide real-time, forward-looking information about the state of the

economy. Their tractability and informational content have made them central to

a wide range of empirical applications, including forecasting the equity premium,
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predicting volatility, and measuring skewness and higher-order risk-neutral mo-

ments.1 A widely used approach for extracting such quantities is the method

of Carr and Madan (2001) (henceforth, CM), which expresses the risk-neutral

expectation of a twice-differentiable payoff as a weighted integral over put and

call prices. Because option prices are observed across a range of strikes on any

given day, the integral can be approximated numerically, enabling the practical

estimation of objects such as the VIX and other risk-neutral measures.

Given the substantial notional amounts traded in derivatives such as VIX op-

tions, accurate measurement of risk-neutral quantities is essential. Measurement

error in these quantities can also distort inference about the informational content

of option prices and their predictive power for future market outcomes. This paper

proposes a new method for estimating risk-neutral quantities that improves sig-

nificantly on the standard approach. Rather than approximating payoffs using a

second-order Taylor expansion around the forward price, as in CM, we project the

target payoff function onto the linear span of payoffs from traded instruments—

specifically, puts, calls, and the underlying.

The approach generalizes the classical put-call parity identity, which arises

from an exact replication of a constant payoff using a portfolio of the underlying,

a put, and a call. In our framework, the constant function is just one element of

a broader class of payoffs that can be projected onto this same payoff space. For

any such projection, the risk-neutral expectation can be computed directly from

observed option prices, yielding a tractable, model-free estimator.

This projection-based approach offers several advantages over the widely used

method of CM. First, it allows for extrapolation beyond the range of observed

strike prices, which is particularly important when option quotes do not extend

sufficiently into the tails. This allows the researcher to incorporate prior beliefs

about the relevant support of the risk-neutral distribution even when strikes are

sparse in the tails. Effectively, the observed option payoffs are used to form the

best approximation to the target payoff over the chosen domain. Moreover, the

resulting estimate corresponds directly to an investable portfolio constructed from

traded options, whereas common extensions of the CM formula rely on curve

fitting and extrapolation to impute unobserved option prices (e.g., Jiang and Tian

(2005)).

1See, for example, Bates (1991), Andersen et al. (2017), Martin (2017), Kremens and Martin
(2019), and Schneider and Trojani (2019) for predicting the equity premium; Britten-Jones and
Neuberger (2000), Carr and Madan (2001), Jiang and Tian (2005), Bollerslev et al. (2009), and
Carr and Wu (2009) for volatility forecasting; and Bakshi et al. (2003), Kozhan et al. (2013),
and Chabi-Yo and Loudis (2020) for higher-order moment estimation.
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Second, the projection approach enjoys good finite-sample properties. In par-

ticular, we derive a bound which implies that the projection-based pricing error is,

up to a constant, the smallest attainable among portfolios spanned by the traded

option payoffs. An analogous guarantee is not available for the CM approach,

even though it uses the same set of observed options. This finite-sample optimal-

ity complements our asymptotic results. In an idealized framework, we show that

projection and CM converge at the same rate to the true risk-neutral expecta-

tion, and under strong assumptions they asymptotically assign the same portfolio

weights. These equivalence results break down in realistic settings with irregu-

lar strike spacing and limited tail coverage. Simulations illustrate the resulting

finite-sample gains, showing that projection yields substantially more accurate es-

timates of key quantities such as VIX and SVIX. This improvement is particularly

relevant in our FX application, where only five strikes are available and quotes do

not extend far into the tails.

Third, unlike the CM approach, the projection method can be used to esti-

mate the full risk-neutral distribution. This is central to a large literature on

recovering measures of risk aversion and pricing kernels.2 Our estimator satisfies

a key internal consistency condition: it exactly reproduces the observed option

prices. This is not guaranteed by most existing approaches. Furthermore, unlike

the classical method of Breeden and Litzenberger (1978), our approach does not

require numerical differentiation of the option price surface. This is an important

advantage, as estimating second derivatives is often unstable in practice due to

the irregular spacing of strike prices.

Fourth, projection generalizes to higher dimensions. Prior work shows that op-

tions on individual stocks cannot pin down joint risk-neutral expectations (Martin,

2018, 2025). We formalize this in Proposition 8, which proves the impossibility

of identifying correlation from single-name options alone. To overcome this, we

incorporate information from index options, which embed constraints on the joint

distribution of the constituents’ returns.

In this more complicated setting, we derive necessary and sufficient conditions

under which simple options complete the market for the payoff class we study.

The key step is an equivalence: market completeness obtains precisely when ridge

2See, for example, Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), Bliss and Panigirtzoglou
(2004), and Almeida and Freire (2022) for estimates of risk aversion; and Ross (1976), Breeden
and Litzenberger (1978), Jackwerth and Rubinstein (1996), Aı̈t-Sahalia and Lo (1998), Rosen-
berg and Engle (2002), Bondarenko (2003), Figlewski (2010), Filipović et al. (2013), Ross (2015),
Beare and Schmidt (2016), Linn et al. (2017), and Figlewski (2018) for estimates of the pricing
kernel or risk-neutral density.
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functions x → g(w′x) are dense in the uniform topology, and the latter question

is well studied in approximation theory (e.g., Pinkus, 2015). Ridge representa-

tions are also familiar in econometrics through projection pursuit (Friedman and

Stuetzle, 1981): the difference here is that the directions w are fixed by portfolio

weights, whereas projection pursuit also optimizes over w.

The density result for ridge functions requires observations on infinitely many

distinct portfolio options, or equivalently, an unbounded set of portfolio weights

w. In practice only a finite collection is observed. For example, options on the

SPDR ETF together with its 11 sector funds yield 12 distinct weights {wj}12j=1.

Estimating correlations or other measures of joint dependence therefore becomes

an inverse problem: we seek to recover those quantities from the finite set of

portfolio returns, i.e. from line projections in Rd. Closely related problems arise

in tomography and compressed sensing, where functionals of a distribution are

reconstructed from line integrals (e.g., Candès et al., 2006). Despite the finite

menu of portfolios, projection can yield informative estimates of joint risk-neutral

moments.

We also consider joint dependence estimation in FX returns, focusing on EUR/USD

and GBP/USD. This setting is particularly clean because triangular parity intro-

duces a traded cross rate, EUR/GBP, satisfying SEUR/GBP = SEUR/USD/SGBP/USD.

Options on the cross therefore contain information about the joint risk-neutral

distribution of the two leg returns. While we show that vanilla options do not

complete the market for the two legs, our projection approach nevertheless recov-

ers option-implied correlations with very high accuracy in simulations and allows

accurate estimation of joint probabilities, addressing a longstanding measurement

problem for return dependence.3 These estimates can be used, for instance, to

infer the option-implied variance of currency portfolios and to calibrate empirical

models of joint currency risk (e.g., Chernov et al. (2018)).

Particular care is required when constructing portfolios that replicate joint-

dependence measures because options on the cross rate are quoted in GBP, whereas

options on the two dollar rates are quoted in USD. Valuing all payoffs under a

common (USD) numéraire introduces a state-dependent conversion term, namely

the pricing kernel that converts GBP-denominated payoffs into USD units. Our

projection approach incorporates this numéraire-change term directly, yielding

a portfolio that is fully implementable for a U.S. investor. This contrasts with

existing approaches in the FX literature which effectively treat the conversion

3See, for example, Ross (1976), Martin (2018), Bondarenko and Bernard (2024), and Martin
(2025) on estimating joint risk-neutral probabilities.
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kernel as constant (e.g., Mueller et al. (2017)).

We estimate the forward-looking (risk-neutral) correlation between EUR/USD

and GBP/USD to average about 0.7 over the sample, with pronounced time varia-

tion. The correlation reaches a local minimum around the June 2016 Brexit vote,

near 0.2. A variance decomposition indicates that this decline is largely accounted

for by a spike in the volatility of GBP/USD, with little contemporaneous change

in EUR/USD volatility. We also estimate the risk-neutral probability that both

monthly returns fall by at least 3%. This measure forecasts subsequent downside

outcomes: in a predictive regression, its coefficient is statistically significant in-

sample. Reduced-form evidence points to state dependence in risk compensation.

In tranquil periods, the joint crash probability under the risk-neutral measure is

below its physical counterpart, consistent with option portfolios providing hedge-

like payoffs. During stress episodes (e.g., the 2008 financial crisis), the ordering

reverses, implying higher compensation required for exposure to joint crash risk.

The rest of this paper is structured as follows. Section 2 reviews the CM

approach and introduces the projection method. Section 3 derives the convergence

properties of the projection approach and establishes an equivalence with risk-

neutral density estimation. Section 4 extends the projection method to higher

dimensions and shows how joint risk-neutral moments can be estimated. Section 5

presents evidence on the finite-sample performance using Monte Carlo simulation,

and Section 6 presents the main empirical findings. Finally, Section 7 concludes.

2 Estimating nonlinear payoffs using projection

In this section, we introduce the projection method to estimate risk-neutral mo-

ments. We first review Carr and Madan (2001) to benchmark our approach.

2.1 Carr-Madan approach

Let g(ST ) denote a payoff at maturity T as a function of the realized stock price

ST . Our object of interest is the conditional risk-neutral expectation EQ
t [g(ST )].

The CM approach constructs a portfolio of puts and calls that replicates g(ST )

state by state. By the law of one price, EQ
t [g(ST )] equals the time-t value of this

replicating portfolio, which can be computed from observed option prices.

To implement this idea, CM start from a second-order Taylor expansion with
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integral remainder,

g(ST ) = g(Ft→T ) + g′(Ft→T )(ST − Ft→T )

+

∫ Ft→T

0

g′′(K) (K − ST )
+ dK +

∫ ∞

Ft→T

g′′(K) (ST −K)+ dK, (1)

where Ft→T is the time-t forward price for maturity T . Using risk-neutral valua-

tion, we obtain

EQ
t g(ST ) = g(Ft→T )+Rf,t→T

∫ Ft→T

0

g′′(K)Pt→T (K) dK+Rf,t→T

∫ ∞

Ft→T

g′′(K)Ct→T (K) dK,

(2)

where Rf,t→T is the gross risk-free rate from t to T , and Pt→T (K) and Ct→T (K)

denote European put and call option prices with strike K and maturity T .

In practice, option prices are observed only at a discrete set of strikes, so the

integrals in (2) are approximated by a trapezoidal rule. For example, for observed

put strikes K0 < · · · < KJ ≤ Ft→T ,∫ Ft→T

0

g′′(K)Pt→T (K) dK ≈
J∑

j=0

g′′(Kj)Pt→T (Kj)∆Kj, (3)

∆K0 := K1 −K0, ∆KJ := KJ −KJ−1, ∆Kj :=
Kj+1 −Kj−1

2
(1 ≤ j ≤ J − 1).

This is the trapezoidal discretization used in the CBOE’s VIX methodology and in

related model-free moment estimators. We refer to (3) as the CM approximation

or discretization, to distinguish it from the exact CM formula in (2). Before

introducing our projection-based alternative, we illustrate how (3) is used in two

canonical applications.

Example 1 (Risk-neutral variance (SVIX)). Martin (2017) derives a bound on

the conditional expected market return using the risk-neutral variance:

EtRt→T −Rf,t→T ≥ 1

Rf,t→T

VarQt Rt→T ,

where Rt→T = ST/St is the return on the stock. To compute this bound from the

data, it is necessary to calculate EQ
t S

2
T . The CM approximation can then be used

with g(ST ) = S2
T and g′′(ST ) = 2.

Example 2 (Risk-neutral entropy (VIX)). The VIX is a popular measure of

market uncertainty and is defined by the risk-neutral entropy of returns (Martin,
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2017):

VIX2
t→T =

2

T − t

(
logRf,t→T − EQ

t logRt→T

)
. (4)

Entropy, just like variance, is a measure of variability of a random variable. In

this case it is necessary to calculate the expectation of a log-return, which can be

accomplished with the CM approximation using g(ST ) = log(ST ) and g′′(ST ) =

−1/S2
T . Britten-Jones and Neuberger (2000) further show that the VIX measures

the risk-neutral expected volatility from time t to t+ T .

In addition to these examples, there are important settings in which the CM

formula does not directly apply. The next two examples illustrate cases that are

central for empirical work.

Example 3 (Risk-neutral distribution). The estimation of the risk-neutral den-

sity is not covered by the CM formula because the payoff function necessary to

calculate the PDF corresponds to a “discontinuous function”. However, Breeden

and Litzenberger (1978) show that the risk-neutral CDF and PDF can be derived

from

FQ
t→T (K) = EQ

t 1 ({ST ≤ K}) = 1 +Rf,t→T
∂

∂K
Ct→T (K)

fQ
t→T (K) =

∂

∂K
FQ
t→T (K) = Rf,t→T

∂2

∂K2
Ct→T (K).

These formulas are widely used to estimate risk-neutral densities and, when com-

bined with additional information on physical probabilities, to infer pricing kernels

and risk aversion. We will show that projection can also be used to estimate the

risk-neutral distribution, thereby treating Examples 1–3 in a unified manner.

Example 4 (Risk-neutral covariance and correlation). For hedging purposes, it

is often useful to estimate the risk-neutral covariance between two stock returns

(see, e.g., Lustig et al. (2014)). In a different direction, the risk-neutral covariance

between the market return and an individual stock also allows us to infer that

stock’s equity premium when the representative investor has log utility (Martin

(2025)):

EtRi,t→T −Rf,t→T =
1

Rf,t→T

CovQ
t (Ri,t→T , Rt→T ) .

In this case, the CM formula neither applies because it is inherently univariate.

Generally, estimating a covariance from options remains an open problem.4 Sec-

4In certain settings the covariance is identifiable from option prices, e.g., for quanto options
(Kremens and Martin, 2019), or one can estimate it by imposing additional constraints, such as
maximizing entropy (see Bondarenko and Bernard (2024)).
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tion 4 shows how the projection approach extends to the multivariate setting,

allowing one to estimate these correlations.

It can also be of interest to estimate the joint risk-neutral distribution. How-

ever, there is no higher-dimensional analogue of Breeden and Litzenberger (1978).

We derive necessary and sufficient conditions on the option market that guarantee

a unique multivariate risk-neutral measure. Although these conditions are typi-

cally not met in practice, the projection approach can nonetheless yield accurate

approximations.

2.2 A simple illustration of the projection method

To illustrate the projection approach to estimating risk-neutral expectations of

non-linear payoffs, consider the following simple example.

Example 5 (Projection approach). Suppose the stock price at time T can take

four possible values: ST = [10, 11, 12, 13]′. We aim to replicate the payoff of the

squared stock value, S2
T . Assume we can trade a risk-free asset with return Rf,t→T ,

the stock itself, and a call option on the stock with strike K = 12. The squared

stock value and the payoffs of the tradable assets, denoted by the matrix X, are

given by

S2
T =


100

121

144

169

 , X =


1 10 0

1 11 0

1 12 0

1 13 1

 .

Clearly the market in this example is not complete because the value of S2
T cannot

be replicated perfectly by a portfolio of tradable assets. To find a portfolio that

comes closest to replicating S2
T , a natural idea is to project S2

T onto the space

spanned by X:

S2
T ≈ Xβ̂, where β̂ = (X ′X)

−1
X ′S2

T .

Because the prices of the tradable assets are observable, we can estimate the risk-

neutral expectation of S2
T via

EQ
t S

2
T ≈ [1, Ft→T , Rf,t→TCt→T (12)]β̂.

This approximation follows from risk-neutral pricing because Ft→T = EQ
t [ST ] and

Ct→T (12) = (1/Rf,t→T )E
Q
t [max(ST − 12, 0)]. In general, the projection estimate

will differ from the CM estimate, because in this example the CM approach always

assigns a portfolio weight of 2 to the option, regardless of the strike price.
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The projection approach also generalizes the familiar put–call parity. For ex-

ample, if we replace S2
T with the payoff of a put option, max(12 − ST , 0), the

projection on X yields zero error, thereby recovering the classical parity relation.

By contrast, put–call parity is not covered by the CM formula because the payoff

functions are not twice differentiable.

2.3 General projection approach

This section generalizes the example above and introduces notation. Let the ob-

served (ordered) out-of-the-money put and call strikes be

KP := [KP
1 , . . . , K

P
nP
k
]′, KC := [KC

1 , . . . , K
C
nC
k
]′,

with KP
nP
k

≤ Ft→T and KC
1 > Ft→T , and define the total number of strikes by

nk := nP
k + nC

k . Let

s := [s1, . . . , sns ]
′

denote a researcher-chosen grid of stock prices at maturity T . The choice of the

endpoints (s1, sns) amounts to a stance on the relevant support of the risk-neutral

distribution; we discuss a data-driven choice in Appendix C. Importantly, this

allows us to estimate risk-neutral expectations even outside the range of observed

strikes.

Define the payoff design matrices for puts and calls on the grid s by

XP
ij := (KP

j − si)+, XC
ij := (si −KC

j )+, i = 1, . . . , ns.

When it creates no confusion, we drop the superscripts P and C on strikes. Let

1ns denote an ns-vector of ones and define the state-by-state payoff matrix

X :=
[
1ns s XP XC

]
∈ Rns×(2+nk).

If a put and a call share the same strike, including both is redundant given put–

call parity and the presence of the bond and stock columns. Let Y ∈ Rns be the

payoff evaluated on the grid, Yi := g(si). We compute the projection of Y onto

the column span of X:

Y = Xβ̂ + ε̂, β̂ := (X ′X)−1X ′Y.
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Equivalently, this yields the approximation

g(ST ) ≈ β̂1 + β̂2ST +

nP
k∑

j=1

β̂P
j (Kj − ST )+ +

nC
k∑

j=1

β̂C
j (ST −Kj)+ =: ĝ(ST ). (5)

Taking risk-neutral expectations on both sides, we obtain a projection estimate

of the risk-neutral expectation.

Definition 1 (Projection estimator). Let X collect terminal payoffs at T (cash,

the underlying, and options) evaluated on a state grid, and let β̂ be the OLS

coefficient vector from projecting the target payoff Y on X. Then the projection

estimator is defined by

EQ
t ĝ(ST ) := β̂1 + β̂2Ft→T +Rf,t→T

 nP
k∑

j=1

β̂P
j Pt→T (Kj) +

nC
k∑

j=1

β̂C
j Ct→T (Kj)

 . (6)

Remark 1 (Constrained least squares). In some applications—such as estimating

risk-neutral variance—it is natural to impose that the estimate be nonnegative.

With very few options, the least-squares replicating portfolio implied by β̂ can

produce a payoff that is negative over parts of the state space, which in turn

can yield a negative variance estimate. In such cases, it is natural to require the

replicating payoff to be nonnegative pointwise. This is achieved by solving the

constrained least-squares problem

min
β

∥Y −Xβ∥22 subject to Xβ ≥ 0,

where the inequality is interpreted componentwise on the chosen state grid. This

convex quadratic program enforces a nonnegative replication in every state and,

hence, a nonnegative variance estimate. Similarly, one may impose direct restric-

tions on the portfolio weights, for example, the componentwise bound β ≥ −c for

some c > 0 to reflect borrowing constraints.

Remark 2 (Weighted least squares). The replicating portfolio in (5) penalizes de-

viations equally across states (stock prices). In applications it can be preferable to

penalize errors more heavily near the forward price—where the risk-neutral mea-

sure places more mass–—and less heavily in the tails. This can be implemented

via weighted least squares:

β̂wls = (X ′WX)−1X ′Wy,
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where W = diag(w1, . . . , wns) collects state weights. The (infeasible) theoretically

optimal choice sets weights proportional to the risk-neutral density, wi ∝ fQ
t→T (si).

A practical alternative is to use, for example, a Gamma weighting density cali-

brated so that its mean matches the forward price and its standard deviation

matches the ATM (forward) implied volatility. As we show below, however, the

choice of weighting affects the portfolio weights only at second order, and as the

strike grid becomes sufficiently dense the resulting replicating portfolio coincides

with the one obtained from the unweighted regression.

Remark 3 (Redundancy of option-implied regressors). Because the projection es-

timator is an OLS linear projection of the target payoff onto the span of the option

basis functions, the Frisch–Waugh–Lovell theorem implies that adding any payoff

that already lies in this span does not change the fitted values. For example, the

CBOE VIX (Example 2) corresponds to a log contract that is replicated from

options. Hence adding log(ST ) as an additional basis element and using the VIX

price does not improve the estimation of a general payoff. By contrast, if there

were a genuinely tradable claim delivering the log payoff (or a variance claim)

whose price were not implied by the options in the basis, then adding log(ST )

would enlarge the span and improve estimation. Notice that the CM formula does

not provide a generic way to exploit information from non-option payoffs.

To illustrate the benefits of the replicating portfolio obtained by projection

in (5) relative to the CM discretization in (3), Figure 1 plots both replicating

portfolios for a nonlinear payoff. The projection-based portfolio is nearly indis-

tinguishable from the true payoff across the entire domain, including outside the

range of observed strikes. In contrast, the CM approximation replicates the payoff

much less accurately, especially in the tails. The discrepancy arises because the

CM formula relies on a Taylor expansion around the forward price (see (1)), and

strike prices do not go far enough in the tails to yield an accurate approximation.

As a result, the risk-neutral expectation can be estimated with substantial error.

2.4 Continuous-state limit

To implement the projection method, the researcher needs to choose a grid of

possible future stock values, s. This is analogous to specifying the up and down

states in the binomial option pricing model. Since the grid can be made arbitrarily

fine, a natural question is what the discrete projection converges to as the mesh

size tends to zero.

Throughout, we denote the set of basis functions used for portfolio replication

11
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Figure 1: Replication of cubic payoff. The figure shows the function g(Rt→T ) =
(2/3)R3

t→T − (37/40)R2
t→T + (21/25)Rt→T (black), together with the projection-

based portfolio (blue) and CM portfolio (red). The approximations are based on
15 strike prices drawn from a uniform distribution. Dashed vertical lines indicate
the minimum and maximum strike values used.

by

F2+nk
=

{
1, ST , (K1 − ST )

+ , . . . ,
(
KnP

k
− ST

)+
, (ST −K1)

+ , . . . ,
(
ST −KnC

k

)+}
.

When convenient, we index the basis as ϕi ∈ F2+nk
for i = 1, . . . , 2+nk. To derive

the limiting value as maxi |si+1 − si| → 0, we make the following assumption.

Assumption 1. Let A = [amin, amax] be a compact interval in R++ such that

amin < KP
1 and amax > KC

nC
k
, and all strike prices are unique. Moreover, g ∈

L2(A):
∫
A
g(S)2 dS < ∞.

Assumption 1 guarantees that the projection estimator is well defined when

ns is sufficiently large. In particular, because the strike prices are assumed to be

unique, all basis functions are linearly independent over L2(A). The next result

establishes the continuous-grid limit. By slight abuse of notation, let β̂ns denote

the projection coefficients obtained from a grid of size ns.

Proposition 1. Let Assumption 1 hold and define an inner product on L2(A) by

⟨ϕi, ϕj⟩ =
∫
A

ϕi(ST )ϕj(ST ) dST .
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If maxi |si+1 − si| → 0 as ns → ∞, then β̂ns → β̂, where

β̂ns →


⟨ϕ1, ϕ1⟩ . . . ⟨ϕ1, ϕ2+nk

⟩
...

. . .
...

⟨ϕ2+nk
, ϕ1⟩ . . . ⟨ϕ2+nk

, ϕ2+nk
⟩


−1 

⟨ϕ1, g⟩
...

⟨ϕ2+nk
, g⟩

 =: β̂. (7)

Moreover, β̂ solves the minimization problem

β̂ = argmin
β∈R2+nk

∫
A

(
g(ST )−

2+nk∑
j=1

βjϕj(ST )

)2

dST . (8)

Longer proofs are delegated to Appendix A. The minimization property in

(8) states that β̂ minimizes the L2-distance between g(·) and the basis functions.

In this sense, the basis functions optimally replicate g(·) over the entire domain.

This property is attractive because A is allowed to be much wider than the range

of available strike prices, which is beneficial if we believe the strikes only cover

a limited range of the stock price’s support. The approach of Carr and Madan

(2001) does not have this property. The continuous-state limit is also a convenient

tool in some of the proofs. However, for practical computations we will mostly

rely on the discrete approximation, as it is faster and numerically more stable.

3 Completeness, convergence, and distribution

estimation

This section establishes conditions under which options complete the market and

the risk-neutral measure is uniquely determined. We then derive the convergence

rate of the projection estimator for risk-neutral expectations. Finally, we show

how the same projection framework can be used to estimate the risk-neutral dis-

tribution.

3.1 Market completeness

Market completeness implies that every contingent claim can be hedged and,

equivalently, that the risk-neutral measure is unique. As is well known, options

complete the market for a single underlying security. For example, the CM port-

folio in (3) converges to the true risk-neutral moment under certain assumptions

on the strike prices. We now establish the analogous result for projection. Specif-
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ically, if there is a portfolio of options, the risk-free asset, and the underlying

stock that perfectly replicates the payoff g(ST ), then projection will find it, as the

following proposition shows.

Proposition 2. Let A ⊂ R+ be compact and let C(A) denote the space of con-

tinuous functions on A equipped with the sup norm ∥g∥ = supx∈A |g(x)|. If the

strikes {Kj}nk
j=1 satisfy

min
j=1,...,nk

|x−Kj| → 0 for every x ∈ A as nk → ∞,

then span(F2+nk
) is dense in C(A). Equivalently, for every g ∈ C(A) there exists

fnk
∈ span(F2+nk

) such that ∥g − fnk
∥∞ → 0.

Intuitively, the condition above means that strikes become dense in A, which

is necessary to replicate g well in the tails. Proposition 2 is a restatement of the

classical fact that piecewise linear splines are dense in C(A) (see, e.g., Lebesgue

(1898)). It is also more general than the CM approximation, which requires addi-

tional smoothness (e.g., g twice differentiable a.e.).

The replication property in Proposition 2 connects to market completeness,

which means that the risk-neutral measure is unique (Back, 2017). When the

prices of options are given and each contingent claim can be replicated, the risk-

neutral measure is indeed uniquely pinned down.

Corollary 1 (Market completeness). Let A and the strikes be as in Proposition 2,

and suppose absence of arbitrage. If two risk-neutral measures agree on the prices

of all traded payoffs in span(F2+nk
) for all nk, then they coincide on C(A) in the

limit, and therefore induce the same risk-neutral distribution on A.

This result is closely related to the Breeden and Litzenberger (1978) formula

from Example 3. While that formula is theoretically elegant, its practical im-

plementation can be challenging because recovering densities requires numerical

differentiation of option prices, which is often unstable. For this reason, researchers

and practitioners commonly use the CM approximation to compute risk-neutral

expectations. However, the CM approximation is not designed for discontinuous

payoffs such as indicator functions and therefore does not directly deliver estimates

of the full risk-neutral distribution. In finite samples, this can lead to substantial

differences between the risk-neutral expectation implied by Breeden and Litzen-

berger (1978) and that implied by the CM approximation, which is undesirable. As

shown in Proposition 7 below, the projection method provides a unified approach

that closes this gap.
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3.2 Convergence rate

In this section, we establish the rate at which the estimated risk-neutral expecta-

tion converges as a function of the number of strikes. From approximation theory,

we expect the convergence rate to depend on the smoothness of the underlying

function (see, e.g., Canuto et al. (2006, Chapter 5) or Trefethen (2018, Chapter

10)). To facilitate the comparison with the CM formula, we assume that the un-

derlying function is twice continuously differentiable. The following proposition

derives the convergence rate of the projection approach under this assumption.

Proposition 3. Suppose g ∈ C2[amin, amax] and that the risk-neutral density is

square-integrable on A:
∫ amax

amin
fQ
t→T (x)

2 dx < ∞. Let ∆ = maxj Kj+1 −Kj, where

the strikes are ordered amin < K1 < K2 < . . . ,Knk
< amax, and assume that

∆ = O(1/nk), K1 − amin = O(1/n
4/5
k ), and amax − Knk

= O(1/n
4/5
k ). Then as

nk → ∞

EQ
t [g(ST )1 (ST ∈ A)] = EQ

t [ĝ(ST )1 (ST ∈ A)] +O

(
1

n2
k

)
,

where ĝ is the function estimated by (5).

Proposition 3 can be viewed as a quantitative version of the statement that

options complete the market (Corollary 1). For the CM formula, the integral

representation can be approximated using the composite trapezoidal rule, which

is the method employed by the CBOE to calculate the VIX. Under the same

assumptions, the CM approximation with the trapezoidal rule attains the same

convergence rate.

Proposition 4. Let everything be as in Proposition 3, and denote the CM repli-

cating portfolio by

ĝCM(ST ) = g(Ft→T ) + g′(Ft→T )(ST − Ft→T )

+
∑

j:Kj≤Ft→T

∆Kj g
′′(Kj) (Kj − ST )

+ +
∑

j:Kj>Ft→T

∆Kj g
′′(Kj) (ST −Kj)

+ .

where

∆Kj =


Kj+1−Kj−1

2
, j = 2, . . . , nk − 1

K2 −K1, j = 1

Knk
−Knk−1, j = nk.
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Then, as nk → ∞

EQ
t [g(ST )1 (ST ∈ A)] = EQ

t [ĝCM(ST )1 (ST ∈ A)] +O

(
1

n2
k

)
.

Because projection and the CM approximation attain the same convergence

rate, it seems plausible that the coefficients are similar when there are lots of

options in the market. In fact, under certain assumptions one can show that

asymptotically the projection approach and the CM approximation attach the

same weights to each option in the portfolio.

Proposition 5. Let A = [amin, amax] and let amin < K1 < · · · < Knk
< amax be

uniformly spaced with

h := Ki −Ki−1 (i = 1, . . . , nk), K0 := amin, Knk+1 := amax.

Assume g ∈ C4(A) and let ĝ be the L2(A)-projection of g onto span(F2+nk
),

ĝ(x) = β̂1 + β̂2x+

nk∑
i=1

γ̂i(x−Ki)+.

Then for interior indices i = 2, . . . , nk − 1,

γ̂i = h g′′(Ki)︸ ︷︷ ︸
CM weight

+O(h3) as h → 0,

where the O(h3) term is uniform in i = 2, . . . , nk − 1. Moreover, at the boundary

one has

γ̂1 = h g′′(K1)︸ ︷︷ ︸
CM weight

+O(h2), γ̂nk
= h g′′(Knk

)︸ ︷︷ ︸
CM weight

+O(h2), as h → 0.

This result may appear surprising at first because the projection method seems

global, in the sense that each coefficient estimate depends on the full set of strikes.

However, results from the series regression literature suggest that it depends on

the number of basis functions: when the number of strikes is small the estimator is

effectively global, whereas as the strike grid becomes dense the projection behaves

increasingly like a local method (see, e.g., Hansen (2022, Section 20.7)).

Why, then, prefer the projection method? First, the results above are asymp-

totic and may not accurately describe the finite-sample behavior that is rele-

vant in practice. Second, Proposition 5 relies on idealized assumptions, such as
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a uniformly spaced strike grid and a mesh that becomes dense all the way to

the endpoints of A. When either assumption fails, as is typical in option data,

the asymptotic approximation in Proposition 5 need not hold, and the implied

portfolio weights can differ substantially from those obtained by a CM type ap-

proximation.

It is therefore desirable to derive a finite-sample bound that does not rely on

these assumptions. The next proposition provides an exact finite-sample bound

on the projection error.

Proposition 6. Let g ∈ C(0,∞), A = [amin, amax] with amin < K1 < . . .Knk
<

amax, and let ĝ be the L2(A)-projection of g onto F2+nk
. Suppose that EQ

t |g(ST )| <
∞, EQ

t ST < ∞, and that

EQ
t [(|g(ST )|+ |ĝ(ST )|)1 (ST /∈ A)] ≤ ε.

Then ∣∣∣EQ
t g(ST )− EQ

t ĝ(ST )
∣∣∣ ≤ ε+ 4dist(g,F2+nk

), (9)

where

dist(g,F2+nk
) = inf

{
max
x∈A

|g − f | : f ∈ F2+nk

}
.

If the support of ST is contained in A, then (9) holds with ε = 0.

The tail assumption effectively says that A, which can be chosen by the re-

searcher, covers most of the support of ST and that the contribution of the risk-

neutral moment outside A is small. The main message of Proposition 6 is that

the estimation error is controlled by how well g is spanned by the given option

basis functions (together with the constant and linear payoffs). For example,

suppose the only option payoff observed is a call option with strike K, and let

g(ST ) = (K − ST )
+. Using the identity

(K − ST )
+ = (ST −K)+ +K − ST ,

the put payoff lies in the span of F2+nk
. Hence, dist(g,F2+nk

) = 0, and the

estimation error is zero. This exactly recovers put–call parity and illustrates that

the bound is genuinely finite-sample: it only uses the actually traded payoff(s),

without any asymptotic market completeness assumption.

A clean substitute for the CM approximation appears unlikely, though we do

not have a formal proof. Under the stated assumptions, no analogue of Propo-

sition 6 can hold for CM, since the formula relies on second derivatives of g and

17



thus defines an unbounded operator with respect to the sup-norm.5 In sum, the

projection error is well controlled in finite samples and leads to a notion of finite

sample near-optimality, while a clean substitute for CM is not available. The

simulation results in Section 5 also confirm this.

3.3 Estimation of the risk-neutral CDF and PDF

The convergence rate and error bound derived above are valid when the function

is twice differentiable, or merely continuous. However, the projection method need

not be restricted to such functions. A primary motivation to broaden the class of

estimable functions comes from estimating the risk-neutral distribution, which re-

quires approximating indicator functions. Since we are ultimately interested in the

risk-neutral expectation of a function, the averaging inherent in the expectation

operator suggests that the projection approach can still estimate the risk-neutral

distribution reliably, even when g is not smooth.

More precisely, consider g(ST ) = 1 (ST ≤ x), which is used to compute the

risk-neutral CDF: FQ
t→T (x) = EQ

t 1 (ST ≤ x). In this case, the projection estimates

obtained in (7) will also depend on x, because

⟨ϕj,1 (· ≤ x)⟩ =
∫
A

ϕj(ST )1 (ST ≤ x) dST =

∫ x

amin

ϕj(ST ) dST .

We will let β̂(x) denote the coefficient estimate corresponding to the function

⟨ϕj,1 (· ≤ x)⟩. The risk-neutral CDF is then simply estimated by

F̂Q
t→T (x) = β̂1(x)+β̂2(x)Ft→T+Rf,t→T

 nP
k∑

j=1

β̂P
j (x)Pt→T (Kj) +

nC
k∑

j=1

β̂C
j (x)Ct→T (Kj)

 .

(10)

The following proposition shows that F̂Q
t→T (x) obtained in this way satisfies many

of the natural CDF requirements.

Proposition 7 (Risk-neutral distribution). Let Assumption 1 hold. Then:

(i) The estimated CDF satisfies the natural boundary limits

lim
x→a+min

F̂Q
t→T (x) = 0, and lim

x→a−max

F̂Q
t→T (x) = 1.

5Even if the assumptions were strengthened to, say, g ∈ C2(0,∞), a finite-sample bound
in the spirit of Proposition 6 still appears unlikely, because the operator that sends g to∑

i g
′′(Ki) (Ki+1 −Ki) is unbounded as a linear functional on (C(A), ∥ · ∥∞); one can construct

sequences of bump functions with ∥g∥∞ bounded but
∑

i g
′′(Ki)(Ki+1 −Ki) diverging.
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(ii) F̂Q
t→T (x) is continuously differentiable on the interior of A, with density es-

timate f̂Q
t→T = (F̂Q

t→T )
′; moreover, f̂Q

t→T is piecewise linear.

(iii) (Moment consistency) The estimated value of a nonlinear contract in (6)

equals the moment implied by the estimated distribution:

EQ
t [ĝ(ST )1 (ST ∈ A)] =

∫
A

g(x) dF̂Q
t→T (x).

Property (iii) is the most important: for any finite set of strikes, the estimated

risk-neutral distribution produces the same moment as obtained by directly ap-

proximating g.6 This moment-consistency is typically not guaranteed by existing

risk-neutral density estimators. In particular, the value of a nonlinear contract

computed from a density estimate will almost never coincide with the estimate

given by the CM method. The CM approach is often used in applications where

the full risk-neutral distribution is not of primary interest, as it is empirically

more robust (see, e.g., Martin (2017)). This discrepancy between density-implied

moments and CM-implied moments calls into question the accuracy of the density

estimate. By construction, the projection approach avoids this issue and yields a

density that is consistent with any moment obtained by direct projection. Fur-

thermore, our density estimator requires only mild assumptions on the underlying

distribution: it is sufficient for the first moment of the stock price to exist.

Despite these desirable properties, the projection-based CDF estimate need

not be monotone. In simulations, violations of monotonicity occur mainly in

the extreme tails, where sparse strike coverage makes the distribution hard to

estimate. A remedy is to apply the rearrangement approach of Chernozhukov

et al. (2013), which amounts to sorting the estimated CDF values on the grid

to enforce monotonicity. In fact, Chernozhukov et al. (2009) show that, unless

the original estimate is already monotone, the rearranged CDF has better finite-

sample properties.

4 Completeness in multiple asset markets and

joint dependence

It is of great interest to generalize the projection approach to higher dimensions.

For example, the risk-premium of an individual return can often be related to its

6That is, using the estimate in (6).
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risk-neutral covariance with the market return (see Example 4). The key challenge

is that the claim paying S1,TS2,T is not traded; hence EQ
t (S1,TS2,T ) needs to be

identified from tradable options.

A naive extension of the univariate approach is to consider a projection of

g(S1,T , S2,T ) = S1,TS2,T onto

ĝ (S1,T , S2,T ) = β̂0 + β̂1S1,T +

nP
k∑

j=1

β̂P
1,j (Kj − S1,T )

+ +

nC
k∑

j=1

β̂C
1,j (S1,T −Kj)

+

+ β̂2S2,T +

nP
k∑

j=1

β̂P
2,j (Kj − S2,T )

+ +

nC
k∑

j=1

β̂C
2,j (S2,T −Kj)

+ . (11)

Notice that the strike prices can be different across assets and basis functions, but

we suppress this dependence for notational clarity. The risk-neutral expectation

of each of the basis functions is known, and thus provides a way to estimate

EQ
t S1,TS2,T . However, the next proposition shows that this separable specification

cannot capture dependence: the implied correlation is always zero.

Proposition 8 (Zero correlation). Assume that the support of S1,T and S2,T

be defined on compact intervals with midpoints equal to EQ
t S1,T = F1,t→T and

EQ
t S2,T = F2,t→T respectively. Let the projection of S1,TS2,T be defined by ĝ in

(11), then

EQ
t [ĝ(S1,T , S2,T )] =

(
EQ

t S1,T

)(
EQ

t S2,T

)
.

Intuitively, options on the individual stocks are sufficient to identify the marginal

distributions, but not the joint distribution. To estimate a nonzero correlation,

the basis must include nonlinear terms that depend on both assets or incorporate

multi-asset instruments such as basket options.

To incorporate additional information that depends on the joint distribution

of returns, options on the S&P500 can be used. As Kelly et al. (2016) noted,

there are eleven sector ETFs that also have options available, and whose weighted

returns sum to the S&P500 return:

11∑
i=1

wi,tRi,t→T = Rt→T ,

where wi,t and Ri,t→T denote the weight and realized return on sector ETF i,

and Rt→T represents the return on the market portfolio. Thus, options on the

S&P500 reveal information about the joint distribution of returns. In combination

with options on the individual sectors, they allow more precise inference about
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correlations. Nevertheless, the information conveyed by options on the market

index and on the sectors is limited: with three or more sectors, correlations cannot

be identified from these derivatives alone. We establish this non-identification

result below.

4.1 Identifying joint dependence from options on multiple

portfolios

We are looking for an extension of Proposition 2 that is valid in higher dimensions.

In particular, we would like to understand when option payoffs are rich enough to

approximate multivariate contingent claims, and how the set of available portfolios

governs what can be learned about joint dependence. Suppose, as in practice, that

there are d sectors (or stocks) that span the market return:7

d∑
i=1

wi,tRi,t→T = Rt→T .

Assume now that for each sector, as well as for the market return, the assump-

tions of Proposition 2 hold, so that any continuous function of the sector return

(or market return), can be uniformly approximated by options. By combining the

options on each of the sectors and on the market return in a portfolio, we thus

conclude that the set of option payoff functions span the space

M(Ω) := span
{
x 7→ f(a′x) : a ∈ Ω, f ∈ C(R)

}
,

where Ω ⊂ Rd is the set of available portfolio directions. In our baseline setting,

Ω = {e1, . . . , ed, wt}, wt = (w1,t, . . . , wd,t)
′, (12)

where ei corresponds to the ith basis vector in Rd (i.e. it gives full weight to sector

i). Functions of the form f(a′x) are known as ridge functions in the approximation

theory literature (Pinkus, 2015). Thus, the question of multivariate spanning by

simple options can be phrased as a question about when ridge functions with

directions in Ω are dense (in the uniform topology on compact sets). The following

result by Vostrecov and Kreines (1961) provides necessary and sufficient conditions

(see also Lin and Pinkus (1993)):

7When dealing with sectors, there are thus d = 11 sectors spanning the S&P500 return.
When dealing with individual returns, there are d = 500 returns spanning the S&P500 return.
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Theorem 2. M(Ω) is dense in C(Rd) in the topology of uniform convergence on

compacta if and only if no non-trivial homogeneous polynomial vanishes on Ω.8

In the special case d = 2, for the set of option payoffs to be dense Theorem 2

requires Ω to contain an infinite number of pairwise linearly independent vectors.

This result is related to Ross (1976) and Martin (2018, Result 2), but is stronger,

because the condition is necessary and sufficient. Furthermore, Theorem 2 applies

to any d ≥ 1, not just to the case d = 2. In applications, we therefore cannot hope

to approximate the price of every multivariate contingent claim arbitrarily well,

since we only observe the finite set of twelve direction vectors in (12) associated

with the d = 11 sector portfolios. Nevertheless, it is still possible to approximate

the payoff of an arbitrary claim using projection on the sector and market option

payoff functions. Furthermore, Theorem 2 suggests that better approximations

can be obtained if we also consider options on a portfolio of sectors, where the

weights are different from the market portfolio. Recently, options were introduced

on an equally weighted sector portfolio (called “EQL”). This additional variation

can allow us to obtain better estimates of the sector correlations.

Remark 4. It was noted by Ross (1976) and Nachman (1988) that payoffs formed

by products of call options on multiple assets are sufficient to complete the market.

In particular, derivatives with payoffs of the form

(S1,T −K1)
+ (S2,T −K2)

+ ,

for arbitrary strikes K1 and K2, together with standard call options on S1,T and

S2,T , span all contingent claims in dimension two.9 In our framework, this market

completeness result follows directly from Proposition 2 and the fact that tensor

products of spline basis functions are dense in the space of continuous functions

on compact sets. This argument immediately generalizes to arbitrary dimension d

by considering tensor products of spline basis functions in Rd. For example, in R3,

market completeness would require observing prices of derivatives with payoffs of

the form

(Si,T −Ki)
+ , (Si,T −Ki)

+ (Sj,T −Kj)
+ , (Si,T −Ki)

+ (Sj,T −Kj)
+ (Sp,T −Kp)

+ ,

for all choices of indices i, j, p and strikes Ki, Kj, Kp. In practice, however, deriva-

tives involving products of options on more than one underlying are not traded

8A polynomial in several variables is homogeneous if all monomials have the same total degree.
9Bakshi and Madan (2000) refer to such securities as correlation options.
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on major exchanges and are typically only available over the counter. For this

reason, we focus on market completeness achieved using simple options, which are

widely traded and liquid.

4.2 Identification of risk-neutral covariances and correla-

tions

Theorem 2 suggests that it is impossible to identify the price of an arbitrary claim

using options, unless we observe an infinite number of different portfolio options.

However, in specific cases, such as the covariance in two dimensions, it is

possible to obtain positive results. Furthermore, in higher dimensions, one can

still approximate the covariance well even if it is not strictly identified. Focusing

on two dimensions first, and letting Rt→T = w1,tR1,t→T +w2,tR2,t→T , the following

identity obtains:

R1,t→TRt→T =
1

2w1,t

R2
t→T +

w1,t

2
R2

1,t→T −
w2

2,t

2w1,t

R2
2,t→T .

The prices of each of the payoffs on the right-hand side can be inferred from options

on the market index, sector 1, and sector 2, respectively. Hence, in this case, the

covariance between any of the returns can be identified from option prices.10

Generally, the question of identifying the price of a payoff thus depends on

whether there is an exact algebraic identity linking the payoff function and a lin-

ear combination of ridge functions. It is useful to have a simple algebraic condition

that determines whether such a separable identity holds. Diaconis and Shahsha-

hani (1984) derived the following necessary and sufficient condition for a function

g(x, y) to admit a representation of the form

g(x, y) =
r∑

i=1

gi(aix+ biy)

In this case, the following differential identity is necessary and sufficient:

r∏
i=1

(
bi

∂

∂x
− ai

∂

∂y

)
[g] = 0.

When d ≥ 3, the situation becomes more involved. Necessary and suffi-

10This is unsurprising, since VarQt Rt→T = w2
1,tVarQt R1,t→T + w2

2,tVarQt R2,t→T +

2w1,tw2,t CovQ
t (R1,t→T , R2,t→T ) and because each individual variance is identified from option

prices, the covariance must also be identifiable.
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cient conditions were derived by Lin and Pinkus (1993), although they are not

straightforward to verify in practice. For completeness, we state their result in

Appendix A.10 and provide a more elementary argument showing why correlations

in dimensions d ≥ 3 cannot be identified solely from options on the individual sec-

tors and the market portfolio. The following Proposition summarizes this result.

Proposition 9 (Non-replication of covariance payoff). Let d ≥ 3. Fix i ∈
{1, . . . , d} and a weight vector w ∈ Rd such that there exist two distinct indices

j, k ̸= i with wj ̸= 0 and wk ̸= 0. Consider the function class

F =

{
d∑

z=1

gz(xz) + h(w · x) : gz, h ∈ C(R)

}
.

Then the polynomial g(x) = xi(w ·x) is not in F . Consequently, no static portfolio

formed from European options on each single return xz and on the market return

w · x can replicate the payoff xi(w · x).

Remark 5. Despite this non-identification result, Appendix B proposes a correla-

tion estimator that can nonetheless approximate the risk-neutral correlation ac-

curately. There we also show how the projection approach generalizes the CBOE

equicorrelation estimator.

4.3 Completeness in FX markets

We now extend the above results to foreign-exchange options. Let S1,T denote

the EUR/USD exchange rate, S2,T the GBP/USD rate, and S3,T the EUR/GBP

rate at maturity T . By triangular no-arbitrage, S3,T = S1,T/S2,T . Hence, options

on EUR/GBP reveal joint information not captured by options on EUR/USD

and GBP/USD, which only reveal the marginal distribution. Incorporating this

additional source of variation is thus expected to yield a better estimate of the

covariance and correlation. Throughout we use the convention that S1 and S2 are

quoted in USD, while S3 is in GBP units.11

With Rf,t→T and R£
f,t→T denoting the US and UK gross risk-free rates, the

European call prices are

C$
i,t→T (K) =

1

Rf,t→T

EQ$

t (Si,T −K)+ , i = 1, 2,

C£
t→T (K) =

1

R£
f,t→T

EQ£

t (S3,T −K)+ ,

11This convention is the same as for the Bloomberg options data that we use in Section 6.
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where Q$ and Q£ are the risk-neutral measures using the US and UK money-

market accounts as numéraires, respectively. This distinction is needed because

EUR/GBP options are GBP-quoted.

Using the change of numéraire result (Shreve, 2004, Chapter 9), it follows that

the Radon-Nikodym derivative between the two risk-neutral measures is given by

dQ$

dQ£

∣∣∣∣
FT

/
dQ$

dQ£

∣∣∣∣
Ft

=
Rf,t→T

R£
f,t→T

S2,t

S2,T

,

where Ft denotes the information set up to time t. Using this result, we obtain

the following expression for a judicious choice of payoff function under Q$

EQ$

t

[
S2,T

(
S1,T

S2,T

−K

)+
]
=

Rf,t→T

R£
f,t→T

S2,tE
Q£

t

[
(S3,T −K)+

]
= Rf,t→TS2,tC

£
t→T (K).

Hence, the reason we consider this specific type of payoff is that the right-

hand side involves quantities that are all observed in the market. Notice how

the change of numéraire ensures that the quantity on the right is in dollar units,

because S2,t converts GBP prices to USD. A key advantage of projection is that

it can incorporate the state-dependent change of numéraire kernel when com-

bining options quoted in different currencies, yielding a theoretically consistent

USD-denominated replicating portfolio. By contrast, much of the existing FX lit-

erature effectively ignores this state dependence (or treats the conversion kernel as

approximately constant) when extracting dependence measures from option prices

(e.g., Mueller et al. (2017)). Further, it is possible to obtain the expected value of

EUR/USD and GBP/USD under the USD risk-neutral measure because

EQ$

t S1,T =
Rf,t→T

Ref,t→T

S1,t = F1,t→T , EQ$

t S2,T =
Rf,t→T

R£
f,t→T

S2,t = F2,t→T ,

where Fi,t→T denotes the T -maturity forward FX rate for pair i = 1, 2.

The foregoing discussion suggests a way to obtain the covariance and correla-

tion between EUR/USD and GBP/USD. Namely, project the function

(S1,T − F1,t→T ) (S2,T − F2,t→T )
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on basis functions of the form

1, S1,T , (S1,T −K)+ , S2,T , (S2,T −K)+ , S2,T

(
S1,T

S2,T

−K

)+

.

Upon taking risk-neutral expectations using the US money market as numéraire,

all expectations of the basis functions reduce to market observables: constant, for-

ward levels, USD call prices multiplied by a known discount factor, and EUR/GBP

call prices multiplied by known discount and FX conversion factors. In particular,

CovQ$

t (S1,T , S2,T ) = EQ$

t (S1,T − F1,t→T ) (S2,T − F2,t→T )

≈ β̂0 + β̂1,1F1,t→T +Rf,t→T

nk∑
j=1

β̂1,j+1C
$
1,t→T (Kj)

+ β̂2,1F2,t→T +Rf,t→T

nk∑
j=1

β̂2,j+1C
$
2,t→T (Kj)

+ F2,t→TR
£
f,t→T

nk∑
j=1

β̂3,jC
£
t→T (Kj).

The number of options and the strike grids generally differ across currencies; we

omit this from the notation to avoid clutter.

If options on all three bilateral rates are available and, for each rate, the

assumptions of Proposition 2 hold, then static portfolios in these options can

uniformly approximate any payoff of the form

g(S1,T , S2,T ) = g1(S1,T ) + g2(S2,T ) + S2,T · g3
(
S1,T

S2,T

)
, (13)

with gi continuous. This function class, however, is not universal on C(A) for a

compact A ⊂ R2
++ with nonempty interior. In particular, the function g(x, y) = xy

cannot be represented by the display above. Thus, the covariance of exchange

rates is not strictly identified from vanillas on the three bilateral rates alone.

Nevertheless, we find in simulations that projecting S1,TS2,T onto the class (13)

yields highly accurate approximations of the covariance and correlation. In our

empirical application, we exploit this observation to estimate conditional risk-

neutral correlations between exchange rates.
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5 Simulation

5.1 Univariate projection

To illustrate the benefits of the projection based approach, we consider the problem

of approximating the value of the SVIX and VIX discussed in Examples 1–2. The

Monte-Carlo experiment randomly draws strike prices from a uniform grid with

cardinality {10, 20, . . . , 130}. We also consider the case where the strike grid is

equally spaced.12 This allows us to study the approximation error as a function

of the number of strikes available in the market. In addition, we also consider a

design where the number of strikes is fixed, but the range of the strike prices is

increasing to cover a bigger part of the distribution’s support.

Based on the strikes, we obtain the corresponding call and put option prices

from either the Black and Scholes (1973) model or the stochastic volatility and

jump (SVCJ) model of Eraker et al. (2003). The latter model incorporates jumps

in both the return and volatility dynamics which makes estimation more chal-

lenging relative to Black-Scholes. More details on the simulation and calibration

of these models are given in Appendix E. The accuracy of the approximation for

each number of strikes is measured by the relative error,

Relative error =

∣∣∣ŜVIX− SVIX
∣∣∣

SVIX
,

where ŜVIX is the SVIX estimate obtained by either CM or the projection method.

The relative error for VIX is defined analogously.

Figure 2 illustrates the results. Panels 2a–2d show convergence as the number

of strikes increases, while the strike range remains fixed at 90% of the support.

When the strike grid is equally spaced, the relative errors of both methods are

roughly half as large as when the strikes are drawn uniformly at random, but both

designs convey the same message. The convergence of the CM method is gradual

and levels off at a relative error of about 10%. By contrast, the projection approach

stabilizes already around 20 strikes, at which point its relative error is roughly an

order of magnitude smaller. At 130 strikes, the relative error remains close to 2% in

all cases. Moreover, for nearly all strike counts, the projection estimate is pointwise

closer to SVIX/VIX than the CM estimate. Because both methods underestimate

12In our implementation, A covers 99.8% of the distribution’s support, while observed strikes
extend only into the 5% tail. Thus Proposition 5 does not apply, and CM and projection weights
can differ substantially.
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SVIX/VIX due to the limited strike range, the projection estimate—being closer

to the truth—is almost always larger than the corresponding CM estimate. In the

empirical application in Appendix C, we find the same behavior in actual data.

The strike range appears more important for the convergence rate of the pro-

jection approach, as shown in Panels 2e and 2f. In this case, convergence is much

faster as the strike range increases while the number of strikes is held fixed at

nk = 30. This result can be understood via the proof of Proposition 3, which

shows that the error arising from the tails converges to zero faster than the error

induced by strike spacing. When the strike range covers almost the entire support,

the relative projection error is close to zero and roughly 63 times smaller than for

CM.

By contrast, the CM approach shows little improvement when the strike range

increases. As the range widens while the number of strikes remains fixed, the aver-

age strike spacing becomes larger, which offsets the benefit of better tail coverage

because the accuracy of the integral approximation deteriorates as the spacing

increases.13

5.2 Multivariate projection for exchange rates

We simulate exchange-rate outcomes under the risk-neutral measure from a bi-

variate normal distribution:[
S1,T

S2,T

]
∼ N

([
1

1

]
,

[
0.12 0.1 · 0.05 · ρ

0.1 · 0.05 · ρ 0.052

])
.

In each Monte Carlo iteration, we draw the correlation independently as ρ ∼
Unif(−1, 1). For the option inputs, we take five strikes each on S1,T , S2,T , and

S1,T/S2,T . The strikes are evenly spaced between the 5th and 95th percentiles

of the respective marginal distributions. This choice mirrors OTC FX practice:

quotes out to the 5-delta call and 95-delta put (under forward-delta conventions)

roughly correspond to the 5th and 95th percentiles for 1-month tenors. The ap-

proximation grid is taken to be equally spaced between the 2nd and 98th per-

centiles of each variable; for two-dimensional quantities we use the tensor product

of the univariate grids.

13In unreported simulations, we replace the trapezoidal rule in the CM approximation by
Simpson’s rule. The numerical results are very similar in all cases and the projection method
continues to dominate.
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(c) Black-Scholes model
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(e) Black-Scholes model
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Figure 2: MSE of approximation. The figure shows the convergence rate as
a function of the number of strikes (upper and middle panels) and as a function
of the strike range (bottom panels). In the top panels, the strike grid is equally
spaced, while in the middle panels the strikes are uniformly distributed.

We then project the payoff (S1,T − 1)(S2,T − 1) onto the span of the payoffs

1, S1,T , (S1,T −K1)
+ , S2,T , (S2,T −K2)

+ , S2,T (S1,T/S2,T −K3)
+ ,

29



with strikes {K1, K2, K3} generated as above. To recover the correlation, we

also estimate the standard deviations by projecting (S1,T − 1)2 onto the constant

function, S1,T , and options on S1,T (and analogously for S2,T ).

In addition, we consider a setting where S2,T is generated as above and then

perturbed to S̃2,T = S2,T + 0.1S3
1,T . S̃2,T is further normalized so that the mean

is 1. We estimate the correlation between S1,T and S̃2,T to introduce nonlinear

dependence and verify that our results are not driven by the normality assumption.

The upper panels in Figure 3 report results from 1,000 Monte Carlo simula-

tions. In both panels, the projection approach recovers the true correlation with

high accuracy: the scatter points lie nearly on the 45◦ line. This is encouraging

because the correlation is not exactly identifiable within the restricted function

class (see Section 4.3). We conclude that projection delivers an excellent approx-

imation to the true correlation in the FX setting, irrespective of the underlying

distribution of the data.

In the bottom panels, we use the same generated data to estimate the joint

probability that both returns are below a certain threshold, which can be in-

terpreted as a measure of joint tail risk. Specifically, we estimate P(S1,T ≤
0.95, S2,T ≤ 0.95), by projecting the payoff

1 (S1,T ≤ 0.95)1 (S2,T ≤ 0.95)

onto the basis functions. The bottom panels of Figure 3 report fitted versus true

probabilities. The estimates line up closely with the 45◦ line—albeit slightly less

tightly than for the correlation results—indicating that the projection method

recovers joint tail probabilities with high accuracy.

6 Empirical application

This section estimates risk-neutral correlations and tail risk using the method of

Section 4.3 in the FX setting.

6.1 Data collection

From Bloomberg we obtain daily end-of-day composite (OTC) quotes for money-

market deposit rates at 1 month EUR, USD and GBP. We also retrieve daily

spot FX rates and construct 1 month forwards for EUR/USD, GBP/USD and

EUR/GBP via covered interest parity.
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(d) Nonlinear dependence

Figure 3: Estimated correlation and joint tail risk in exchange-rate mar-
kets. Each point is one of 1,000 Monte Carlo simulations. Top: true correla-
tion versus its projection-based estimate. Bottom: true joint left-tail probability
P(S1,T ≤ 0.95, S2,T ≤ 0.95) versus its projection-based estimate.

For FX options, we use Bloomberg’s OTC constant-maturity implied volatili-

ties at 1M. Each day we observe the standard smile pillars: the ATM delta-neutral

volatility and the 10- and 25-delta risk reversals (RR) and butterflies (BF), quoted

under the spot-delta, premium-included convention. When fixed-delta call/put

vols are not directly provided, we recover them from ATM, RR and BF via the

standard identities. We then map quotes to strikes and compute option prices

using the Garman–Kohlhagen model, the reference model with respect to which

the implied volatilities are quoted.14 For each currency pair, this yields only five

strikes per day, yet the simulations indicate that projection remains accurate un-

der such sparse strike coverage. Our sample spans July 2008 to April 2023 and

contains 3,721 trading days. Finally, returns on each currency are defined relative

to the forward price: Ri,t→T = Si,T/Fi,t→T . Thus, by construction, EQ
t Ri,t→T = 1.

14Using the Garman–Kohlhagen formula in this step simply converts implied volatilities into
option prices and does not impose Garman–Kohlhagen as the true pricing model.
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6.2 Correlation estimates

Before presenting the estimates, it is instructive to assess the quality of the projec-

tion approximation in our sample. We take option quotes on the three exchange

rates on July 1, 2008 (the first day of our sample) and project the covariance

payoff

(R1,t→T − 1) (R2,t→T − 1)

onto the span of the 15 observed option payoffs, together with the cash position

and the two underlying exchange rates. The left panel of Figure 4 plots the true

covariance payoff, while the right panel plots the payoff of the replicating portfolio

obtained by projection. The contour shapes are highly similar overall, and the

projection captures the key tail regions, corroborating our simulation evidence

that the risk-neutral covariance is well approximated from the available options

in the exchange rate setting.
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(a) Covariance payoff

0.92 0.94 0.96 0.98 1 1.02 1.04
R1;t!T

0.92

0.94

0.96

0.98

1

1.02

1.04

R
2;

t!
T

-10

-5.5

-1

3.5

8

#10 -3

(b) Projection replication

Figure 4: Covariance replicating portfolio. The figure shows the covari-
ance payoff (left) and its projection-based replicating portfolio payoff (right) for
EUR/USD and GBP/USD gross returns. Option strikes and forward prices are
from July 1, 2008.

Panel 5a reports the 1-month forward-looking risk-neutral correlation between

the EUR/USD and GBP/USD exchange rates over time. As expected, almost all

estimates lie below one; the few instances slightly above one are consistent with

small measurement noise, as in our simulations. The sample-average correlation is

about 0.7, in line with the view that major exchange rates co-move due to a handful

of common risk factors. The lowest estimate—about 0.2—occurs just before the

Brexit referendum, on June 9–10, 2016. Panel 5b indicates that the decline in

correlation is driven primarily by a sharp increase in GBP/USD volatility.

32



The high frequency of option quotes also lets us zoom in on short-lived episodes.

One stands out: a sharp decline in the 1-month risk-neutral correlation between

December 12, 2012 and February 14, 2013, from nearly one to roughly 0.4. As

the right panel of Figure 5 shows, this drop was not accompanied by a spike in

the (annualized) volatilities, pointing to a genuine change in dependence rather

than a level-volatility effect. Several contemporaneous developments are consistent

with this interpretation: unexpectedly weak UK Q4-2012 GDP (weighing on GBP)

alongside improving euro-area conditions such as the tightening peripheral spreads

and the first LTRO repayments, which would have supported EUR. We therefore

view this episode as a period in which currency-specific risks dominated shared

USD drivers, temporarily depressing the implied correlation.

6.3 Tail probability estimates

Second, we examine the joint risk-neutral crash probability, defined as the prob-

ability that both EUR/USD and GBP/USD monthly returns are less than 3%.

The estimate from our projection approach is shown in red in Panel 5c (labeled

“dependent”). For comparison, we also plot the independence benchmark (labeled

“independent”), obtained by multiplying the estimated marginal crash probabili-

ties. The figure shows that accounting for dependence is crucial: the joint (depen-

dent) probability is typically well above the independence benchmark, especially

during periods of market stress.

To evaluate the informativeness of the joint risk-neutral crash probability, we

estimate the forecasting model

Crasht→T = β0 + β1RiskNeutralProbt→T + εt→T , (14)

where CrashT = 1 (R1,t→T ≤ 0.97)1 (R2,t→T ≤ 0.97). The regressor is either the

dependent (option-implied) joint crash probability or the independence bench-

mark (product of marginal crash probabilities). Results appear in Table 1. The

dependent joint probability is a significant predictor, and the associated R2 is

substantially larger than for the independence benchmark. If physical and risk-

neutral crash probabilities coincided at each date, the restriction [β0, β1] = [0, 1]

would hold; the bottom row reports the p-value of this Wald test, which is not

rejected only for the dependent regressor. We also report an out-of-sample R2,
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Figure 5: Daily risk-neutral correlation, volatility, and crash risk (30-day
horizon). Panels (a)–(d) plot: (a) the 30-day risk-neutral correlation between
EUR/USD and GBP/USD; (b) the corresponding annualized 30-day risk-neutral
standard deviations for each exchange rate; (c) the 30-day joint crash probability
under independence (pEUR pGBP) and under the option-implied dependence struc-
ture; (d) the option-implied (dependent) crash probability alongside the physi-
cal crash probability estimated from OLS. The estimates in this last panel are
smoothed using a 30-day moving average.

R2
OOS, defined as

R2
OOS = 1−

∑
T (Crasht→T − Ĉrasht→T )

2∑
T (Crasht→T − Crasht→T )2

,

where forecasts are Ĉrasht→T = RiskNeutralProbt→T , and Crasht→T is the histor-

ical prevailing crash probability computed using an expanding window that begins

after 1,000 historical observations are available. This design avoids any in-sample

bias and yields a strict out-of-sample evaluation. In both specifications R2
OOS is

positive, with larger values when using the dependent covariate, indicating that
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risk-neutral probabilities outperform the prevailing-mean benchmark.

The last column of Table 1 includes both predictors; the incremental R2 gain is

modest, and the coefficient on the independence benchmark enters with the oppo-

site sign. We conclude that the option-implied (dependent) joint crash probability

performs markedly better, providing evidence that it helps forecast joint physical

tail risk.

Panel 5d plots the inferred physical joint crash probability based on the re-

gression with the dependent (option-implied) covariate, alongside the risk-neutral

series; both are smoothed for readability. The figure illustrates a time-varying

premium for joint crash risk. During turbulent periods (e.g., the Global Financial

Crisis), the risk-neutral probability exceeds the physical estimate, consistent with

a positive compensation for bearing joint tail risk. In contrast, in calmer mar-

kets the ordering often reverses—the physical probability exceeds the risk-neutral

one—suggesting that currency exposures may provide a hedging benefit and earn

a negative tail-risk premium. Overall, the evidence points to currencies serving

as tail-risk hedges in normal times, but commanding compensation during stress

episodes.

This evidence is consistent with the structural explanation of Lustig et al.

(2014). They argue that, in times of stress when the marginal utility of wealth is

high, U.S. investors who are long foreign currencies are exposed to the risk that

the dollar appreciates. Consequently, the conditional expected return on such a

strategy should be high. In contrast, during normal times the strategy behaves

more like a hedge: investors bear the risk of a dollar depreciation following a

positive shock to the U.S. pricing kernel, so the conditional expected return is low

or even negative.

7 Conclusion

This paper introduces a new approach to estimating risk-neutral expectations from

option prices. The core idea is to project the target payoff function onto the space

spanned by observed option payoffs and the underlying asset. Like the method of

Carr and Madan (2001), the resulting estimate is a linear combination of option

prices and the underlying. However, the projection approach makes optimal use

of the available strike prices to minimize the approximation error. We show that

this method much better finite sample properties. Simulation results confirm this

advantage: the projection method delivers approximation errors that are orders

of magnitude smaller.
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(1) (2) (3)

Constant (β0) 0.042
(0.0171)

0.032
(0.0182)

0.031
(0.0178)

Independent 1.350
(0.8585)

−1.380
(1.8274)

Dependent 0.652
(0.3497)

1.176
(0.7555)

R2(%) 0.94 1.33 1.45
R2

OOS(%) 2.70 3.75
p-value (const= 0, slope= 1) 0.00 0.16

Table 1: OLS estimates of (14). Each column reports a different forecasting
model. Newey–West standard errors (20 trading-day lag) are shown beneath the
coefficients. The bottom row reports the p-value of the Wald test on the joint
restriction [β0, β1] = [0, 1].

We extend the projection approach to higher dimensions and, using approximation-

theoretic tools (ridge functions), derive necessary and sufficient conditions under

which simple options complete multiple asset markets. Although these condi-

tions are rarely satisfied exactly in practice, we show that projection still es-

timates joint risk-neutral expectations robustly—most notably for risk-neutral

covariances/correlations in the FX setting. Thus, projection provides a unified

framework for estimating risk-neutral quantities not only for a single asset but

also in the multi-asset case.

The empirical application, FX, provides a clean setting for multivariate esti-

mation. In simulations, the projection estimator recovers the true correlation with

near-zero error. In the data, we estimate the conditional 1-month risk-neutral cor-

relation between EUR/USD and GBP/USD returns, which averages around 0.7.

Thanks to the high frequency and forward-looking nature of option quotes, we

detect a notable shift in this correlation at the end of 2012. We interpret this as

a genuine change in dependence: bearish U.K. news contrasted with more bullish

euro-area developments that temporarily weakened the co-movement between the

two USD majors.

Relatedly, we also estimate the joint risk-neutral crash probability and find that

it forecasts future realized crashes. Furthermore, when comparing the risk-neutral

crash probability to the physical probability inferred from an OLS regression, we

find that the risk-neutral probability is higher during crises but generally lower

outside these periods. We interpret this as data-driven evidence that U.S. investors

in portfolios of foreign currencies demand crash compensation in bad times, but

value these positions as a hedge in normal market conditions.
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A Proofs

A.1 Proof of Proposition 1

Proof. The normal equations yield X ′Xβ̂ns = X ′Y . The (i, j)-element of X ′X

and the ith element of X ′Y are given by

(X ′X)ij =
ns∑
z=1

ϕi(sz)ϕj(sz), (X ′Y )i =
ns∑
z=1

ϕi(sz)g(sz).

Assuming that the grid is equally spaced with length m(ns) = (amax − amin)/ns,

it follows by the Riemann sum approximation that as ns → ∞

m(ns)(X
′X)ij →

∫
A

ϕi(ST )ϕj(ST ) dST , m(ns)(X
′Y )i →

∫
A

ϕi(ST )g(ST ) dST .

The proof continues to hold if the grid in not equally spaced but the mesh goes

to zero. The associated Gram matrix is invertible because the basis functions are

linearly independent in L2(A), so the solution to the normal equations exists and

is unique if ns is sufficiently large.

The proof that β̂ also solves the minimization problem follows immediately

from the first order conditions(∫
A

ϕ(ST )ϕ(ST )
′ dST

)
β̂ =

∫
A

g(ST )ϕ(ST ) dST ,

where ϕ(ST ) = [ϕ1(ST ), . . . , ϕ2+nk
(ST )]

′.
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A.2 Proof of Proposition 2

The following proof is well known (see Lebesgue (1898)), but we include it for

completeness and because the assumption on the strikes results in some slight

modifications of the original proof. The proof below is presented for call options,

but applies verbatim to put options as well.

Proof. Let g ∈ C(A). Because g is continuous on a compact set it is uniformly

continuous: for every ε > 0 there exists a δ > 0 (independent of x), such that

sup|x−y|<δ |g(x)− g(y)| < ε. Let amin = x1 < x2 < · · · < xn = amax be a partition

of A such that xj+1 − xj < δ ∀j, where amin = min(A) and amax = max(A).

On each interval [xj, xj+1] construct a linear function g̃j(x) = ajx + bj such that

g̃j(xj) = g(xj) and g̃j(xj+1) = g(xj+1). For every xc ∈ (xj, xj+1) it follows that

|g(xc)− g̃j(xc)| ≤ |g(xc)− g(xj)|+ |g(xj)− g̃j(xc)| < 2ε,

because

|g(xj)− g̃j(xc)| =
∣∣∣∣ xc − xj

xj+1 − xj

∣∣∣∣ |g(xj+1)− g(xj)| .

Since xc is arbitrary, it follows that supx∈[xj ,xj+1]
|g(x)− g̃j(x)| < 2ε. Now, define

the polygonal function

g̃(x) =
n−2∑
j=1

g̃j(x)1 (x ∈ [xj, xj+1)) + g̃n−1(x)1 (x ∈ [xn−1, xn]) . (15)

From the construction above it follows that g̃ is continuous and supx∈A |g(x) −
g̃(x)| < 2ε. We claim that the polygonal function constructed in this way can be

written as

g̃(x) = β1 +
n−1∑
j=1

βj+1 (x− xj)
+ . (16)

To see this, proceed inductively. On [x1, x2], (15) can be written as

g̃(x) = a1x+ b1 = a1 (x− x1)
+ + b̃1,

where b̃1 = b1 + a1x1. On [x1, x3], we can write

g̃(x) = a1 (x− x1)
+ + b̃1 + ã2 (x− x2)

+ + b̃2,

where

a1 + ã2 = a2 and b̃2 = b2 + a1x1,
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which can be solved for to obtain ã2, b̃2. Continuing inductively, we obtain (16).

It remains to show that g̃ can be uniformly approximated by a function of the

form

g̃nk
(x) = β1 +

nk−1∑
j=1

βj+1 (x−Kj)
+ ,

where Kj is among the observed call option strike prices. But this can be achieved

if nk is large enough. Specifically, let nk be large enough such that maxj=1,...,n−1 |xj −Kj| <
ε. By assumption such nk can always be found since {Kj}nk

j=1 is dense in A as

nk → ∞. Considering that

sup
x∈A

∣∣(x− xj)
+ − (x−Kj)

+
∣∣ < ε,

it follows by another application of the triangle inequality that

sup
x∈A

|g(x)− g̃nk
(x)| < 3ε.

A.3 Proof of Corollary 1

Proof. According to Billingsley (1999, Theorem 1.2), a probability measure P

on a metric space is completely determined by the expected values Ef(X), for

all bounded, uniformly continuous functions f , where X ∼ P. Proposition 2

shows there is a sequence of functions fnk
∈ span(F2+nk

) converging uniformly to

f . Because A is compact and f, fnk
are continuous (hence bounded), the domi-

nated convergence theorem shows that Ef(X) is pinned down uniquely for every

bounded, uniformly continuous f .

A.4 Proof of Proposition 3

Proof. Without loss of generality, we assume that all strike prices correspond

to call options. We start by deriving an error bound on the piecewise linear

polynomial, denoted by g̃, that interpolates the points

{
(amin, g(amin)), (Kj, g(Kj))

nk
j=1, (amax, g(amax))

}
.
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Letting g̃j denote the interpolating polynomial on [Kj, Kj+1], it follows from stan-

dard results in approximation theory (e.g., Embree (2010, Lecture 11)) that

max
x∈[Kj ,Kj+1]

|g(x)− g̃j(x)| ≤
(

max
ξ∈[Kj ,Kj+1]

|g′′(ξ)|
2

)(
max

x∈[Kj ,Kj+1]
(x−Kj)(Kj+1 − x)

)
≤ ∥g′∥∞

1

8
(Kj+1 −Kj)

2 , (17)

where ∥g′∥∞ = maxξ∈[amax,amin] |g′′(ξ)|. Hence,∫ Kj+1

Kj

(g(x)− g̃j(x))
2 dx ≤ 1

64
∥g′∥2∞ (Kj+1 −Kj)

5 .

Since g̃ equals g̃j(x) on [Kj, Kj+1), it follows that

∫ Knk

K1

(g(x)− g̃(x))2 dx =

nk−1∑
j=1

∫ Kj+1

Kj

(g(x)− g̃j(x))
2 dx

≤ nk

64
∥g′∥2∞ ∆5

= O(1/n4
k), (18)

where in the last line we used that ∆ = O(1/nk). Applying (17) again on

[Knk
, amax] renders the estimate

max
x∈[Knk

,amax]
|g(x)− g̃(x)| ≤ ∥g′∥∞

1

8
(amax −Knk

)2 . (19)

A similar bound can be derived on [amin, K1]. From the proof of Proposition 2 we

know that g̃(x) can be written in the form

g̃(x) = β1 + β2x+

nk∑
j=1

β2+j (x−Kj)
+ .
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Then we can bound the estimation error as follows∣∣∣EQ
t [g(ST )1 (ST ∈ A)]− EQ

t [ĝ(ST )1 (ST ∈ A)]
∣∣∣

=

∣∣∣∣∫ amax

amin

(g(x)− ĝ(x)) fQ
t→T (x) dx

∣∣∣∣
≤
∫ amax

amin

|g(x)− ĝ(x)| fQ
t→T (x) dx

≤
(∫ amax

amin

(g(x)− ĝ(x))2 dx

)1/2(∫ amax

amin

fQ
t→T (x)

2 dx

)1/2

≤
(∫ amax

amin

(g(x)− g̃(x))2 dx

)1/2(∫ amax

amin

fQ
t→T (x)

2 dx

)1/2

=

(∫ amax

amin

fQ
t→T (x)

2 dx

)1/2(∫ K1

amin

(g(x)− g̃(x))2 dx

+

∫ Knk

K1

(g(x)− g̃(x))2 dx+

∫ amax

Knk

(g(x)− g̃(x))2 dx

)1/2

=:

(∫ amax

amin

fQ
t→T (x)

2 dx

)1/2

(B1 +B2 +B3)
1/2 ,

where we successively used the Cauchy-Schwarz inequality combined with the

square-integrability of fQ
t→T , and the minimization property of ĝ. From (18), we

know that B2 = O(∆4) = O(1/n4
k). Moreover, by (19) and the assumption that

amax − Knk
= O(1/n

4/5
k ), B3 is of order O(amax − Knk

)5 = O(1/n4
k). Analogous

reasoning yields B1 = O(K1 − amin)
5 = O(1/n4

k).

A.5 Proof of Proposition 4

Proof. Over A, the CM Taylor expansion in (1) is given by

g(x) = g(Ft→T ) + g′(Ft→T ) (x− Ft→T )

+

∫ Ft→T

amin

g′′(K) (K − x)+ dK +

∫ amax

Knk

g′′(K) (x−K)+ dK.

We will focus on the case x ≤ Ft→T (the case x > Ft→T is identical). The integral

is discretized using the trapezoidal rule, which is known to satisfy

∑
j:Kj≤Ft→T

∆Kj g
′′(Kj) (Kj − ST )

+ =

∫ Ft→T

K1

g′′(K) (K − x)+ dK +O

(
1

n2
k

)
,
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uniformly in x. Hence, for x ∈ [K1, Ft→T ], we obtain

max
x∈[K1,Ft→T ]

|g(x)− ĝCM(x)| = O

(
1

n2
k

)
.

For x ∈ [amin, K1], we get

|g(x)− ĝCM(x)| =
∣∣∣∣∫ K1

x

g′′(K)(K − x) dK

∣∣∣∣
≤ ∥g′′∥∞

1

2
(K1 − x)2 .

Analogous reasoning yields a similar bound for x > Ft→T . The same reasoning at

the end of Proposition 3 then finally gives∣∣∣∣∫ amax

amin

(g(x)− ĝCM(x)) f
Q
t→T (x) dx

∣∣∣∣
≤
(∫ amax

amin

fQ
t→T (x)

2 dx

)1/2(∫ K1

amin

(g(x)− ĝCM(x))
2 dx

+

∫ Knk

K1

(g(x)− ĝCM(x))
2 dx+

∫ amax

Knk

(g(x)− ĝCM(x))
2 dx

)1/2

=

(
O (K1 − amin)

5 +O

(
1

n4
k

)
+O (amax −Knk

)5
)1/2

= O

(
1

n2
k

)
.

A.6 Proof of Proposition 5

Proof. Let PL denote the space of continuous piecewise linear functions on this

knot sequence. It is standard that (e.g. using the proof of Proposition 2)

PL = span
(
F2+nk

)
= span{1, x, (x−K1)+, . . . , (x−Knk

)+}.

Equivalently, PL is spanned by the nodal tent functions {φi}nk+1
i=0 defined by

φi(Kj) = δij, supp(φi) = [Ki−1, Ki+1],

46



(where φ0, φnk+1 are the boundary hats). In particular, any s ∈ PL can be written

uniquely as

s(x) =

nk+1∑
i=0

αiφi(x), αi = s(Ki).

Let g ∈ C4(A) and let ĝ be its L2(A)-projection onto PL. Write ĝ(x) =∑nk+1
i=0 αiφi(x) and define

bi :=

∫
A

φi(x)g(x) dx, Mij :=

∫
A

φi(x)φj(x) dx.

Then the normal equations are Mα = b. For interior indices i = 1, . . . , nk (away

from the boundary), the matrix entries on a uniform grid are

Mii =
2h

3
, Mi,i±1 =

h

6
, Mij = 0 if |i− j| > 1,

so the interior normal equations read (see also de Boor (2001, p.34))

h

6
αi−1 +

2h

3
αi +

h

6
αi+1 = bi, i = 1, . . . , nk. (20)

Define yi := bi/h and the discrete operator T by

(T α)i :=
1

6
αi−1 +

2

3
αi +

1

6
αi+1.

Then (20) is equivalently

(T α)i = yi, i = 1, . . . , nk. (21)

Step 1 (expansion of yi). For interior i, the hat function satisfies φi(Ki + u) =

1− |u|/h for u ∈ [−h, h], hence

bi =

∫ Ki+1

Ki−1

g(x)φi(x) dx =

∫ h

−h

g(Ki + u)
(
1− |u|

h

)
du.

Expanding g(Ki + u) around u = 0 and using symmetry (odd moments vanish),

we obtain

bi
h

= yi = g(Ki) +
h2

12
g′′(Ki) +O(h4), i = 1, . . . , nk,

where the O(h4) term is uniform in i.
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Step 2 (candidate solution). Define the candidate sequence

α̃i := g(Ki)−
h2

12
g′′(Ki). (22)

A Taylor expansion yields, for interior i,

(T α̃)i = α̃i +
h2

6
α̃′′(Ki) +O(h4).

Since α̃′′(K) = g′′(K)− h2

12
g(4)(K), this implies

(T α̃)i = g(Ki) +
h2

12
g′′(Ki) +O(h4).

Combining with Step 1 gives the residual

ri := (T α̃)i − yi = O(h4), i = 1, . . . , nk.

The operator T corresponds to a tridiagonal Toeplitz matrix on interior indices,

and is strictly diagonally dominant. Hence T is uniformly invertible on interior

indices and ∥T −1∥ ≤ C for a constant C independent of h. Therefore, solving (21)

and using T α = y,

α− α̃ = T −1(y − T α̃) = −T −1r,

so αi − α̃i = O(h4) for interior i. In particular,

αi = g(Ki)−
h2

12
g′′(Ki) +O(h4), i = 1, . . . , nk. (23)

Step 3 (translate to option basis). Write the same projected spline in the

option payoff basis,

ĝ(x) = β̂1 + β̂2x+

nk∑
i=1

γ̂i (x−Ki)
+ .

For x ̸= Ki, differentiating gives

ĝ′(x) = β̂2 +
∑

j:Kj<x

γ̂j,
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hence γ̂i is the jump in slope at Ki. Let

pi :=
αi+1 − αi

h
(the slope of ĝ on [Ki, Ki+1]).

Then the jump in slope at Ki is

γ̂i = pi − pi−1 =
αi+1 − 2αi + αi−1

h
.

A Taylor expansion yields αi+1 − 2αi + αi−1 = h2α′′(Ki) +O(h4), hence

γ̂i = hα′′(Ki) +O(h3).

Using (23), we have α′′(Ki) = g′′(Ki) +O(h2), and therefore

γ̂i = h g′′(Ki) +O(h3), i = 2, . . . , nk − 1,

i.e. for interior strikes the leading-order term of the projection coefficient in the

truncated power basis is h g′′(Ki).

The slower convergence rate at the boundary coefficient γ̂1 follows because the

kernel function ϕ0 is one sided, so odd moments under the kernel function no

longer vanish. The same observation applies to γ̂nk
.

A.7 Proof of Proposition 6

Proof. The space spanned by F2+nk
is equal to the span of the B-spline basis

functions of order 2 with knots at amin < K1 < · · · < Knk
< amax. In particular,

this implies that the L2(A)-projections concur. de Boor (2001, Theorem 12 in

Chapter 2) then shows that

max
x∈A

|g(x)− ĝ(x)| ≤ 4 dist(g,F2+nk
).
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Consequently,∣∣∣EQ
t g(ST )− EQ

t ĝ(ST )
∣∣∣ ≤ ∫ ∞

0

|g(x)− ĝ(x)| fQ
t→T (x) dx

=

∫ amin

0

|g(x)− ĝ(x)| fQ
t→T (x) dx+

∫ amax

amin

|g(x)− ĝ(x)| fQ
t→T (x) dx

+

∫ ∞

amax

|g(x)− ĝ(x)| fQ
t→T (x) dx

≤ EQ
t [(|g(ST )|+ |ĝ(ST )|)1 (ST /∈ A)] + 4 dist(g,F2+nk

)

≤ ε+ 4dist(g,F2+nk
).

Notice that EQ
t ST < ∞ implies that EQ

t |ĝ(ST )| < ∞, since ĝ is a piecewise linear

function of ST , and therefore has at most linear growth.

A.8 Proof of Proposition 7

Proof. Part (i) follows immediately from the continuous-state problem (8), as

1 (ST ≤ amin) ≡ 0 and 1 (ST ≤ amax) ≡ 1. Since the approximating function class

contains the constant function, it follows that the solution to (8) in both cases is

β = 0 and [β1, β2, . . . , β2+nk
] = [1, 0, . . . , 0] respectively.

Part (ii): We need to establish differentiability of β̂(x). The risk-neutral distri-

bution can easily be derived from (7) and (10). In particular, from (7) we deduce

that

∂

∂x
β̂(x) =


⟨ϕ1, ϕ1⟩ . . . ⟨ϕ1, ϕ2+nk

⟩
...

. . .
...

⟨ϕ2+nk
, ϕ1⟩ . . . ⟨ϕ2+nk

, ϕ2+nk
⟩


−1



1

x
...

ϕj(x)
...

ϕ2+nk
(x)


.

Each component of ∂
∂x
β̂(x) is therefore a piecewise linear function due to the

structure of the basis functions. The final claim then follows because a linear

combination of piecewise linear functions is piecewise linear.

Part (iii): By the Gram-Schmidt process, we can assume that {ϕi}2+nk

i=1 is

an orthonormal basis w.r.t. the inner product ⟨ϕi, ϕj⟩ =
∫
A
ϕi(x)ϕj(x) dx. This

integral is finite because all basis functions are continuous and A is compact.
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Hence, for x ∈ A the risk-neutral CDF and PDF can be expressed as

F̂Q
t→T (x) =

2+nk∑
j=1

⟨1 (ST ≤ x) , ϕj(ST )⟩EQ
t ϕj(ST )

f̂Q
t→T (x) =

∂

∂x
F̂Q
t→T (x) =

2+nk∑
j=1

ϕj(x)E
Q
t ϕj(ST ). (24)

Notice that EQ
t ϕj(ST ) is now a linear combination of put and call option prices

due to the Gram-Schmidt process. It follows from (24) that

∫
A

g(x) dF̂Q
t→T (x) =

2+nk∑
j=1

EQ
t [ϕj(ST )]

∫
A

g(x)ϕj(x) dx

=

2+nk∑
j=1

EQ
t [ϕj(ST )] ⟨g, ϕj⟩

= EQ
t ĝ(ST ).

The last line follows because, under the Gram-Schmidt process, β̂j from (7) equals

⟨g, ϕj⟩ since ⟨ϕi, ϕj⟩ = δij by orthonormality.

A.9 Proof of Proposition 8

Proof. To simplify notation in the proof, we let x denote stock 1 (S1,T ) and y

denotes stock 2 (S2,T ). Similarly, the support of both stock will be denoted by

the intervals [x1, xn] and [y1, yn]. By a straightforward extension of Equation (8),

ĝ solves the approximation problem∫ xn

x1

∫ yn

y1

(xy − ĝ(x, y))2 dy dx. (25)

We first solve a simpler problem where the function xy is projected on

ĝ(x, y) = β̂0 + β̂1x+ β̂2y.
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The first order conditions for the (simplified) approximation problem (25) imply∫ xn

x1

∫ yn

y1

xy − β̂0 − β̂1x− β̂2y dy dx = 0 (26a)∫ xn

x1

∫ yn

y1

x
(
xy − β̂0 − β̂1x− β̂2y

)
dy dx = 0 (26b)∫ xn

x1

∫ yn

y1

y
(
xy − β̂0 − β̂1x− β̂2y

)
dy dx = 0. (26c)

Now define the constants

x̄ =
1

xn − x1

∫ xn

x1

x dx = (xn + x1)/2 = EQ
t S1,T

ȳ =
1

yn − y1

∫ yn

y1

y dy = (yn + y1)/2 = EQ
t S2,T

x̄ȳ =
1

xn − x1

1

yn − y1

∫ xn

x1

∫ yn

y1

xy dy dx

The fact that x̄ and ȳ are equal to the risk-neutral expectations of the first and

second stock follows from the assumption. The first constraint in (26) forces

β̂0 = x̄ȳ − β̂1x̄− β̂2ȳ.

The second and third constraints can thus be expressed as∫ xn

x1

∫ yn

y1

(x− x̄)
[
xy − x̄ȳ − β̂1(x− x̄)− β̂2(y − ȳ)

]
dy dx = 0∫ xn

x1

∫ yn

y1

(y − ȳ)
[
xy − x̄ȳ − β̂1(x− x̄)− β̂2(y − ȳ)

]
dy dx = 0.

From here, we readily obtain the solution

β̂1 =

∫ xn

x1

∫ yn
y1

(x− x̄)(xy − x̄ȳ) dy dx∫ xn

x1

∫ yn
y1

(x− x̄)2 dy dx
= ȳ (27a)

β̂2 =

∫ xn

x1

∫ yn
y1

(y − ȳ)(xy − x̄ȳ) dy dx∫ xn

x1

∫ yn
y1

(y − ȳ)2 dy dx
= x̄ (27b)

β̂0 = −x̄ȳ (27c)

Finally we verify that adding a put or call option basis function yields a coefficient

of zero. To see this, without loss of generality, we focus on a basis function of the
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form (x−K)+. Using the first order conditions, it is sufficient to show that∫ xn

x1

∫ yn

y1

(x−K)+
(
xy − β̂0 − β̂1x− β̂2y

)
dy dx = 0,

where β̂0, β̂1 and β̂2 are given by (27a) – (27c). Notice that xy− β̂0 − β̂1x− β̂2y =

(x− x̄)(y − ȳ). So the integral can be written as∫ xn

x1

(x−K)+ (x− x̄) dx

∫ yn

y1

y − ȳ dy = 0.

A.10 Sufficient conditions for ridge representation and the

proof of Proposition 9

For completeness, we state the result of Lin and Pinkus (1993), giving necessary

and sufficient conditions for ridge representation to hold. To state the result, some

additional terminology is necessary. A polynomial p(x1, . . . , xd) can be associated

to the differential operator p( ∂
∂x1

, . . . , ∂
∂xd

). Let P (a1, . . . , ar) be the set of poly-

nomials which vanish on all lines {λai, λ ∈ R}. Let Q be the set of polynomials

q(x1, . . . , xd) such that p( ∂
∂x1

, . . . , ∂
∂xd

)q = 0 for all p ∈ P (a1, . . . , ar).

Proposition 10 (Lin and Pinkus (1993)). Let a1, . . . , ar be pairwise linearly in-

dependent vectors in Rd. A function g ∈ C(Rd) can be expressed in the form

g(x) =
r∑

i=1

gi(a
i · x)

if and only if g belongs to the closure of the linear span of Q.

In many practical situations, a more elementary argument suffices to show that

a function cannot be written as a ridge combination with given directions ai. For

example, in the case d = 3, the following reasoning shows that g(x) = x1(w
′x)

cannot be expressed as

g(x) = g1(x1) + g2(x2) + g3(x3) + g4(w
′x).

Suppose, by contradiction, that such a representation exists. Then, by differ-

entiating twice, we have ∂2g
∂x2∂x3

= 0. However, ∂2gi
∂x2∂x3

for i = 1, . . . , 3, while
∂2g4

∂x2∂x3
= w2w3g

′′
4(w

′x). This implies that g4 must be affine, but this cannot possi-

53



bly hold since g(x) contains the cross terms x1x2 and x1x3. This proves Proposition

9 in case d = 3. Notice that we tacitly assume the most favorable scenario where

options complete the market for each asset (e.g. using the same assumptions as

in Proposition 2), so that each gi can be estimated with arbitrary accuracy.

The argument generalizes directly to d ≥ 3, thus showing that in higher di-

mensions it is not possible to perfectly estimate the risk-neutral covariance or

correlation of sector i with the market portfolio.

A.11 Proof of Proposition 11

Proof. Let β̂ denote the projection coefficients obtained from the quadratic pro-

jection. We need to show that

∫
A

(
xixj − β̂0 −

d∑
r=1

β̂rx
2
r − β̂Mx2

M

)
xn
k dx = 0,

for odd n ∈ N, and k ∈ {1, . . . , d,M}. Because each xn
r and xn

M are symmetric

around Rf,t→T , it follows that β̂0

∫
A
xn
k dx = 0 for k = {1, . . . , d,M}.

Next suppose that k ∈ {1, . . . , d}. Then∫
A

xixjx
n
k dx = 0. (28)

This holds because the integral factors and it always contains an odd moment

which vanishes. Using the same reasoning, it follows that

∫
A

d∑
r=1

β̂rx
2
rx

n
k dx = 0.

Now we handle the excess market return. Note that because
∑d

r=1 wr = 1, it

follows that

x2
M =

d∑
r=1

w2
rx

2
r + 2

∑
1≤j1<j2≤d

wj1wj2xj1xj2 .

Then, using identical reasoning as before we get∫
A

x2
Mxn

k dx = 0.

Suppose now that k = M (the market return). Ordering the indices i1, . . . , in as

j1 < · · · < jm for some 1 ≤ m ≤ n with each jr occurring with multiplicity ar, we
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then obtain that for n ∈ N(
d∑

i=1

wixi

)n

=
∑

1≤j1<···<jm≤d

cn,a1,...amw
a1
j1
xa1
j1
. . . wam

jm
xam
jm

(29)

where 1 ≤ m ≤ n, a1, . . . , am are positive integers adding up to n, and cn,a1,...am is

the multinomial coefficient

cn,a1,...am =
n!

a1! . . . am!
.

From the identity (29), it follows that for odd n ≥ 3∫
A

xixjx
n
M dx = 0.

The identity holds by splitting cases. The only way for the integral to be non-zero

is if the summand in (29) contains even powers of xi and xj. But if that is the

case, then there must be at least one odd power of xk for some k ̸= i, j. As shown

at the beginning of the proof, the integral of an odd power of xk is zero.

Similar reasoning shows that∫
A

x2
ix

n
M dx = 0, (30)

because the only reason the integral cannot vanish is when (29) contains even

powers of xi. But then by implication there must be at least one odd moment of

xk in the product, whose integral vanishes. Because the overall integral factors as

a product we conclude (30).

Finally, the fact that
∫
A
x2
Mxn

M dx = 0 follows again because xn+2
M is an odd

function.

A.12 Proof of Proposition 12

Proof. We start from the identity

x2
M =

d∑
k=1

w2
kx

2
k + 2

∑
1≤i<j≤d

wiwjxixj.
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Because F contains the quadratic monomials, and because the projection operator

Π̂F is linear and idempotent, it follows that

x2
M =

d∑
k=1

w2
kx

2
k + 2

∑
1≤i<j≤d

wiwjΠ̂F [xixj].

Taking risk-neutral expectations on both sides then completes the proof.

B Projection and equicorrelation

Given that vanilla options on the individual sectors and the market portfolio do

not, in general, identify the full matrix of pairwise correlations, one must introduce

additional structure. A common approach is to impose equicorrelation. We show

that this equicorrelation estimator can be interpreted as a replicating portfolio, and

then use projection to generalize it: the projection step chooses portfolio weights

that are optimal (in an L2 sense) for estimating heterogeneous covariances and

correlations. In this section we assume that no dividends are paid, although it is

straightforward to incorporate them at the cost of slightly heavier notation.15

The equicorrelation estimator of Engle and Kelly (2012) assumes that the

correlation between any two assets is the same. In that case, the correlation

estimate can be written as

ρ̂t =
VarQt (Rt→T )−

∑d
j=1w

2
j,tVarQt (Rj,t→T )

2
∑

1≤i<j≤d wi,twj,t

√
VarQt (Ri,t→T )VarQt (Rj,t→T )

.

This formula is also used by the CBOE to construct its implied correlation index.

It is useful to reinterpret this as a portfolio replication problem. The target payoff

is
(Ri,t→T −Rf,t→T )(Rj,t→T −Rf,t→T )√

VarQt (Ri,t→T )VarQt (Rj,t→T )
,

and the basis functions are the quadratic payoffs

(Rt→T −Rf,t→T )
2 and (Rj,t→T −Rf,t→T )

2 , for j = 1, . . . , d

Viewed this way, the replicating portfolio is the same for all i ̸= j, with weights

proportional to a weighted average of sector-specific standard deviations.

15Under this assumption, EQ
t Ri,t→T = Rf,t→T . If we include dividends, then EQ

t Ri,t→T =
Fi,t→T /St.
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The projection approach allows us to optimize and generalize these features.

For shorthand, let xk := Rk,t→T − Rf,t→T and xM := Rt→T − Rf,t→T denote the

excess returns on asset k and on the market, respectively. Let x = [x1, . . . , xd]
′,

so that xM = w · x, where w is the vector of market weights. To generalize the

equicorrelation estimator, we seek the optimal replicating portfolio for xixj, which

directly targets the risk-neutral covariance between returns i and j.16

First, consider the continuous-state analogue. Let A = A1 × · · · ×Ad ⊂ Rd be

compact. We seek univariate functions g1, . . . , gd, gM ∈ C(R) that minimize

∫
A

(
xixj −

d∑
k=1

gk(xk)− gM(xM)
)2

dx,

where xM = w′x. Rather than solving this infinite-dimensional problem directly,

we approximate it by restricting attention to low-degree polynomial payoffs. This

is motivated by two considerations: (i) polynomials are dense in C(A) (Stone–

Weierstrass); and (ii) higher-order risk-neutral moments are empirically difficult

to estimate. The following result implies that we can restrict attention to quadratic

and quartic terms, because the coefficients on odd moments are zero.

Proposition 11 (Odd-moment orthogonality). Fix i ̸= j. Let F = {1, x2
1, . . . , x

2
d, x

2
M},

and let Π̂F [xixj] be the L2-projection onto F under the inner product ⟨f, g⟩ =∫
A
f(x)g(x) dx, where A = A1× . . . Ad, and Ai = [aimin, a

i
max] is symmetric around

0. Define the residual function by

ε̂ij = xixj − Π̂F [xixj].

Then for every odd integer n ≥ 1,

⟨ε̂ij, xn
k⟩ = 0 for all k ∈ {1, . . . , d,M} .

Remark 6. In practice, the interval for each excess return will typically not have

0 as midpoint, because options data are skewed and there tends to be more infor-

mation going further in the left-tail. Nevertheless, the midpoint of each interval

will be close to 0, and we find in simulation that the projection coefficients of odd

moments still tend to be negligible in that case.

In contrast to odd-moments, the projection coefficients of even degree will

generally not vanish, and including these monomials will generally decrease the

16Working with covariance instead of correlation involves no loss of generality, since the
equicorrelation estimator maps directly to a replicating portfolio for xixj .
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approximation error. Compared to the equicorrelation estimator, we thus gain

generality in that we incorporate not only variance but also the 4th moment (a

measure of tail-thickness), and the portfolio weights are allowed to differ for each

pair of assets, thus allowing to estimate the correlation between an arbitrary pair

of assets, instead of assuming all correlations are the same.

Projecting xixj on the subspace

F =
{
1, x2

1, . . . , x
2
d, x

4
1, . . . , x

4
d, x

2
M , x4

M

}
(31)

also circumvents the computational burden of projecting xixj directly onto the

full set of option payoffs. The latter would require minimizing an objective that

depends on an 11-dimensional integral and a large number of parameters. A

discretized OLS approach is likewise infeasible: with 1000 grid points per return,

the state grid would contain 100011 rows.

Instead, we first project xixj onto F and then project each resulting power

payoff onto the corresponding univariate option basis. This two-step procedure

yields the same result as projecting directly onto the smallest subspace, because for

orthogonal projections onto nested subspaces one has ΠF g = ΠF ΠG g whenever

F ⊆ G (with respect to the same inner product).

Moreover, the projection of xixj onto F can be derived in closed form, and

the subsequent projection of a monomial such as x2
k onto option payoffs that

depend only on asset k is a one-dimensional problem, which can be solved using

the method in Section 2.3. Based on the projection coefficient on the subspace in

(31), we define an estimator of the covariance by

Ĉov
Q

ij,t := EQ
t Π̂F [xixj] = β̂0,ij +

d∑
k=1

[
β̂k,ijVarQt (Rk,t→T ) + γ̂k,ijE

Q
t (Rk,t→T −Rf,t→T )

4
]

+ β̂M,ijVarQt Rt→T + γ̂M,ijE
Q
t (Rt→T −Rf,t→T )

4 . (32)

Because we can identify the risk-neutral variance, for consistency, it is desirable

that the covariance estimator satisfies

VarQt Rt→T =
d∑

i=1

w2
iVarQt Ri,t→T + 2

∑
1≤i<j≤d

wiwjĈov
Q

ij,t. (33)

The next proposition shows that the addition formula holds whenever the

projection space contains all univariate quadratic terms.

Proposition 12. Let F be a function space such that {x2
1, . . . , x

2
d, x

2
M} ⊂ F .
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Define the covariance estimator based on F by

Ĉov
Q

ij,t = EQ
t Π̂F [xixj].

Then, (33) holds.

Remark 7. Motivated by the empirical setting, the results above extend to the

case with multiple index portfolios. Suppose there are two index returns xM,1 =

w1 · x and xM,2 = w2 · x with corresponding options. Then Proposition 11 holds

verbatim for each index. Likewise, Proposition 12 holds simultaneously provided

the projection space contains all univariate quadratic terms, including x2
M,1 and

x2
M,2; under this condition, (33) holds for each weight vector wℓ (ℓ = 1, 2), with

the variance on the left-hand side taken for the corresponding portfolio.

B.1 Simulation evidence for sector ETFs

We now evaluate the efficacy of the covariance estimator in (32) for the eleven

sector ETFs using a simple factor structure under the risk-neutral measure. Let

X ∈ R11 denote log-returns and R = exp(X) the corresponding gross returns. We

simulate

X = Bf + ε, f ∼ N
(
0, diag(σ2

1,f , σ
2
2,f )
)
, ε ∼ N

(
0, diag(σ2

1, . . . , σ
2
11)
)
, f ⊥ ε,

with B ∈ R11×2. Hence

VarQt (X) = B diag(σ2
1, σ

2
2)B

′ + diag(σ2
1, . . . , σ

2
11).

The factor structure captures systematic risk and cross-sectional correlation.

We set the gross-return means to one and winsorize R at [0.4, 1.5] componentwise.

Entries of B are drawn iid from Unif[−0.4, 1].

We run 1,000 Monte Carlo simulations. In each run we compute the mean

squared error (MSE) between the vector of true pairwise correlations and the

estimated correlations. As a benchmark, we include the equicorrelation estimator.

Table 2 reports summary statistics: the projection-based estimator attains lower

MSE across the distribution. We also report the correlation between the true

correlation vector and the projection-based estimate within each run; the average

is about 20%, indicating that the projection approach captures meaningful cross-

sectional heterogeneity. By construction, the equicorrelation estimator does not

capture such heterogeneity, as it imposes a common correlation across all pairs.

59



Min Median Max Mean Std. dev.

Equicorrelation 0.0231 0.1361 0.3860 0.1436 0.0472
Projection correlation 0.0253 0.1259 0.3312 0.1284 0.0408

Table 2: Summary statistics of MSE. This table summarizes, across 1,000
Monte Carlo simulations, the distribution of the MSE for the equicorrelation es-
timator and the projection-based correlation estimator in (32).

C Empirical estimates of SVIX and VIX

According to the simulation results, the projection approach compares favorably

to the CM formula especially when the number of observed option prices is small.

When the number of observed options is large it is a priori not so clear whether

a more refined approximation yields economically different results. To investigate

the benefits of the projection approach in the latter case, we estimate the SVIX

and VIX from Examples 1–2 using both methods. The calculation of both indexes

requires options on the S&P500, which is one of the most liquid option markets

worldwide. The SVIX and VIX thus stand a natural test case.

The options data on the SP500 are coming from OptionMetrics and span the

period January 4, 1996 until July 20, 2023. Several data cleaning procedures

are applied before each volatility index is calculated. The procedure is almost

identical to CBOE’s method when it calculates the VIX. A detailed description of

our procedure is included in Appendix D.

First, consider the SVIX defined by

SVIX2
t→T =

1

T − t
VarQt

(
Rt→T

Rf,t→T

)
. (34)

Martin (2017) derives conditions under which the conditional equity premium

satisfies
1

T − t
(EtRt→T −Rf,t→T ) ≥ Rf,t→TSVIX

2
t→T .

In fact, when running the regression

1

T − t
(EtRt→T −Rf,t→T ) = β0 + β1Rf,t→TSVIX

2
t→T + εT , (35)

Martin (2017, 2025) cannot reject the null hypothesis that β0 = 0 and β1 = 1, thus

suggesting that the lower bound is tight. This conclusion is particularly interesting

as it gives a model-free way to measure the equity premium in real time. Given

60



its importance, we reassess this claim by using our projection method to measure

SVIX2
t→T . Table 3 shows the results. For each prediction horizon, the difference

between the CM and projection method are very small, suggesting that in very

liquid option markets it is immaterial which method is used.

30 days 90 days 180 days

Projection CM Projection CM Projection CM

β0 0.002
(0.0407)

0.005
(0.0400)

−0.002
(0.0512)

−0.005
(0.0504)

−0.046
(0.0361)

−0.052
(0.0365)

β1 1.434
(1.0160)

1.493
(1.0816)

1.395
(1.2693)

1.589
(1.3602)

2.455
(0.7914)

2.865
(0.8371)

R2 (%) 1.12 1.08 2.09 2.35 6.91 7.94
# obs 6932 6932 6865 6865 6745 6745

Table 3: Equity premium regression. This table reports estimates from re-
gression (35) for return horizons of 30, 90, and 180 days. Newey–West standard
errors, using a bandwidth equal to the number of trading days in the horizon, are
reported in parentheses below the coefficients.

In addition to SVIX, we also estimate the VIX. Figure 6 plots the time series

of the difference between the two VIX estimates; the solid orange line is its 60-day

moving average, which remains positive throughout, consistent with the simula-

tion. The largest gaps occur early in the sample when option coverage is sparser.

We mark the 20 largest differences with blue dots, which can reach close to 8 per-

centage points. Such a gap is economically significant: portfolios with hundreds

of VIX futures contracts can experience multi-million-dollar P&L swings. The

single largest peak occurs on March 2, 2009, at the height of the global financial

crisis. On that day, the projection-implied VIX is 52%, while the CM approxi-

mation yields 44%. During periods of heightened uncertainty, risk-neutral mass

shifts to the left tail, which amplifies entropy because log(x) decays steeply near

zero (see (4)). In such episodes the CM method—linearized around the risk-free

rate–—can be inaccurate, whereas the projection method remains reliable because

it approximates log(x) well over the entire domain. In line with this intuition, the

largest measurement differences cluster around the dot-com bust (2000), the global

financial crisis (2008), and COVID-19 (2020).

D Option data preprocessing

We use SP500 option data from OptionMetrics, covering the period January 4,

1996 to July 20, 2023. Following the CBOE procedure, we discard all in-the-money
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Figure 6: VIX estimate. This figure shows the projection VIX estimate mi-
nus the VIX estimate obtained by CM. The solid orange line denotes the 60-day
moving average of this difference. The blue dots indicate the 20 largest observed
differences.

put and call options, as well as any option with a bid price of zero. When there are

two consecutive strikes with a bid price equal to zero, all options with higher strikes

(for calls) or lower strikes (for puts) are discarded. For each remaining option, the

price is defined as the average of the bid and ask prices. In total, this filtering

yields 11.738 million option prices. The risk-free rate for each return horizon is

obtained from the zero-coupon yield curve dataset provided by OptionMetrics.

D.1 ETF options and conversion of American option price

Options on SPY, XLK, and SPXT are recorded as American in OptionMetrics.

To estimate the risk-neutral volatility, we first convert these quotes to European-

equivalent prices. For each option we compute the Black–Scholes price using the

forward price and implied volatility reported by OptionMetrics; this conversion

accounts for dividends via the forward.17

After this conversion, our preprocessing for SPY is identical to Section D. For

XLK and SPXT, by contrast, in-the-money options are often liquid, so we retain

both in- and out-of-the-money quotes. Furthermore, we discard only options with

zero bid prices, rather than also truncating the strike range after two consecutively

17As in Martin (2017) and Kremens and Martin (2019), we assume dividends are known in
advance and paid at time T .
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observed zero-bid options.

E Details on simulation

In the Monte-Carlo simulation, we use two different models to generate option

prices. In both cases the time to maturity is 1 year. The first model is the

standard Black and Scholes (1973) model with a risk-free rate of 5% and volatility

of 20%. The simulation of the stochastic volatility jump (SVCJ) model is based

on Eraker et al. (2003). In their setup, the log asset price follows(
d logSt

dVt

)
=

(
µ

κ (θ − Vt−)

)
dt+

√
Vt−

(
1 0

ρσv

√
1− ρ2σv

)
dWt +

(
ξy

ξv

)
dNt,

where Vt− = lims↑t Vs denotes the left limit, Wt is a standard two-dimensional

Brownian motion, Nt is a Poisson process with intensity λ, and ξy, ξv are the

jump sizes in returns and volatility. These jump sizes are correlated and have

distributions ξv ∼ exp(µv) and ξy|ξv ∼ N
(
µy + ρJξ

v, σ2
y

)
. For simulation, we

only need to calibrate the model under the risk-neutral measure. The risk-neutral

parameters are taken from Broadie et al. (2007) and are summarized in Table 4.

Parameter Value

κ 0.0570
θ 0.0062
ρ −0.4838
σv 0.0800
µv 0.2213
µy −0.0539
ρJ 0.0000
σy 0.0578
λ 1.5120
r 0.0500

Table 4: SVCJ model calibration
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