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Abstract

We propose a projection method to estimate risk-neutral moments from
option prices. We derive a finite-sample bound implying that the projec-
tion estimator attains (up to a constant) the smallest pricing error within
the span of traded option payoffs. No analogous guarantee is available for
the widely used Carr—-Madan approximation. We then extend the frame-
work to multiple underlyings, deriving necessary and sufficient conditions
under which simple options complete the market in higher dimensions, and
providing estimators for joint moments. Simulations demonstrate that the
method remains accurate in sparse-strike settings and in higher dimensions.
In the empirical application, we recover risk-neutral correlations and joint
tail risk from FX options alone, addressing a longstanding measurement
problem raised by Ross (1976). Our joint tail-risk measure predicts future
joint currency crashes and identifies periods in which currency portfolios

are particularly useful for hedging.

1 Introduction

Option prices provide real-time, forward-looking information about the state of the
economy. Their tractability and informational content have made them central to

a wide range of empirical applications, including forecasting the equity premium,
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predicting volatility, and measuring skewness and higher-order risk-neutral mo-
ments.! A widely used approach for extracting such quantities is the method
of Carr and Madan (2001) (henceforth, CM), which expresses the risk-neutral
expectation of a twice-differentiable payoff as a weighted integral over put and
call prices. Because option prices are observed across a range of strikes on any
given day, the integral can be approximated numerically, enabling the practical
estimation of objects such as the VIX and other risk-neutral measures.

Given the substantial notional amounts traded in derivatives such as VIX op-
tions, accurate measurement of risk-neutral quantities is essential. Measurement
error in these quantities can also distort inference about the informational content
of option prices and their predictive power for future market outcomes. This paper
proposes a new method for estimating risk-neutral quantities that improves sig-
nificantly on the standard approach. Rather than approximating payoffs using a
second-order Taylor expansion around the forward price, as in CM, we project the
target payoff function onto the linear span of payoffs from traded instruments—
specifically, puts, calls, and the underlying.

The approach generalizes the classical put-call parity identity, which arises
from an exact replication of a constant payoff using a portfolio of the underlying,
a put, and a call. In our framework, the constant function is just one element of
a broader class of payoffs that can be projected onto this same payoff space. For
any such projection, the risk-neutral expectation can be computed directly from
observed option prices, yielding a tractable, model-free estimator.

This projection-based approach offers several advantages over the widely used
method of CM. First, it allows for extrapolation beyond the range of observed
strike prices, which is particularly important when option quotes do not extend
sufficiently into the tails. This allows the researcher to incorporate prior beliefs
about the relevant support of the risk-neutral distribution even when strikes are
sparse in the tails. Effectively, the observed option payoffs are used to form the
best approximation to the target payoff over the chosen domain. Moreover, the
resulting estimate corresponds directly to an investable portfolio constructed from
traded options, whereas common extensions of the CM formula rely on curve
fitting and extrapolation to impute unobserved option prices (e.g., Jiang and Tian
(2005)).

1See, for example, Bates (1991), Andersen et al. (2017), Martin (2017), Kremens and Martin
(2019), and Schneider and Trojani (2019) for predicting the equity premium; Britten-Jones and
Neuberger (2000), Carr and Madan (2001), Jiang and Tian (2005), Bollerslev et al. (2009), and
Carr and Wu (2009) for volatility forecasting; and Bakshi et al. (2003), Kozhan et al. (2013),
and Chabi-Yo and Loudis (2020) for higher-order moment estimation.



Second, the projection approach enjoys good finite-sample properties. In par-
ticular, we derive a bound which implies that the projection-based pricing error is,
up to a constant, the smallest attainable among portfolios spanned by the traded
option payoffs. An analogous guarantee is not available for the CM approach,
even though it uses the same set of observed options. This finite-sample optimal-
ity complements our asymptotic results. In an idealized framework, we show that
projection and CM converge at the same rate to the true risk-neutral expecta-
tion, and under strong assumptions they asymptotically assign the same portfolio
weights. These equivalence results break down in realistic settings with irregu-
lar strike spacing and limited tail coverage. Simulations illustrate the resulting
finite-sample gains, showing that projection yields substantially more accurate es-
timates of key quantities such as VIX and SVIX. This improvement is particularly
relevant in our FX application, where only five strikes are available and quotes do
not extend far into the tails.

Third, unlike the CM approach, the projection method can be used to esti-
mate the full risk-neutral distribution. This is central to a large literature on
recovering measures of risk aversion and pricing kernels.” Our estimator satisfies
a key internal consistency condition: it exactly reproduces the observed option
prices. This is not guaranteed by most existing approaches. Furthermore, unlike
the classical method of Breeden and Litzenberger (1978), our approach does not
require numerical differentiation of the option price surface. This is an important
advantage, as estimating second derivatives is often unstable in practice due to
the irregular spacing of strike prices.

Fourth, projection generalizes to higher dimensions. Prior work shows that op-
tions on individual stocks cannot pin down joint risk-neutral expectations (Martin,
2018, 2025). We formalize this in Proposition 8, which proves the impossibility
of identifying correlation from single-name options alone. To overcome this, we
incorporate information from index options, which embed constraints on the joint
distribution of the constituents’ returns.

In this more complicated setting, we derive necessary and sufficient conditions
under which simple options complete the market for the payoff class we study.

The key step is an equivalence: market completeness obtains precisely when ridge

2See, for example, Ait-Sahalia and Lo (2000), Jackwerth (2000), Bliss and Panigirtzoglou
(2004), and Almeida and Freire (2022) for estimates of risk aversion; and Ross (1976), Breeden
and Litzenberger (1978), Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998), Rosen-
berg and Engle (2002), Bondarenko (2003), Figlewski (2010), Filipovi¢ et al. (2013), Ross (2015),
Beare and Schmidt (2016), Linn et al. (2017), and Figlewski (2018) for estimates of the pricing
kernel or risk-neutral density.



functions © — g(w'x) are dense in the uniform topology, and the latter question
is well studied in approximation theory (e.g., Pinkus, 2015). Ridge representa-
tions are also familiar in econometrics through projection pursuit (Friedman and
Stuetzle, 1981): the difference here is that the directions w are fixed by portfolio
weights, whereas projection pursuit also optimizes over w.

The density result for ridge functions requires observations on infinitely many
distinct portfolio options, or equivalently, an unbounded set of portfolio weights
w. In practice only a finite collection is observed. For example, options on the
SPDR ETF together with its 11 sector funds yield 12 distinct weights {wj}]lil.
Estimating correlations or other measures of joint dependence therefore becomes
an inverse problem: we seek to recover those quantities from the finite set of
portfolio returns, i.e. from line projections in R?. Closely related problems arise
in tomography and compressed sensing, where functionals of a distribution are
reconstructed from line integrals (e.g., Candes et al., 2006). Despite the finite
menu of portfolios, projection can yield informative estimates of joint risk-neutral
moments.

We also consider joint dependence estimation in FX returns, focusing on EUR /USD
and GBP/USD. This setting is particularly clean because triangular parity intro-
duces a traded cross rate, EUR/GBP, satisfying Sgur/asp = Seur/usp/Sasp/usp-
Options on the cross therefore contain information about the joint risk-neutral
distribution of the two leg returns. While we show that vanilla options do not
complete the market for the two legs, our projection approach nevertheless recov-
ers option-implied correlations with very high accuracy in simulations and allows
accurate estimation of joint probabilities, addressing a longstanding measurement
problem for return dependence.® These estimates can be used, for instance, to
infer the option-implied variance of currency portfolios and to calibrate empirical
models of joint currency risk (e.g., Chernov et al. (2018)).

Particular care is required when constructing portfolios that replicate joint-
dependence measures because options on the cross rate are quoted in GBP, whereas
options on the two dollar rates are quoted in USD. Valuing all payoffs under a
common (USD) numéraire introduces a state-dependent conversion term, namely
the pricing kernel that converts GBP-denominated payoffs into USD units. Our
projection approach incorporates this numéraire-change term directly, yielding
a portfolio that is fully implementable for a U.S. investor. This contrasts with

existing approaches in the FX literature which effectively treat the conversion

3See, for example, Ross (1976), Martin (2018), Bondarenko and Bernard (2024), and Martin
(2025) on estimating joint risk-neutral probabilities.



kernel as constant (e.g., Mueller et al. (2017)).

We estimate the forward-looking (risk-neutral) correlation between EUR/USD
and GBP/USD to average about 0.7 over the sample, with pronounced time varia-
tion. The correlation reaches a local minimum around the June 2016 Brexit vote,
near 0.2. A variance decomposition indicates that this decline is largely accounted
for by a spike in the volatility of GBP/USD, with little contemporaneous change
in EUR/USD volatility. We also estimate the risk-neutral probability that both
monthly returns fall by at least 3%. This measure forecasts subsequent downside
outcomes: in a predictive regression, its coefficient is statistically significant in-
sample. Reduced-form evidence points to state dependence in risk compensation.
In tranquil periods, the joint crash probability under the risk-neutral measure is
below its physical counterpart, consistent with option portfolios providing hedge-
like payoffs. During stress episodes (e.g., the 2008 financial crisis), the ordering
reverses, implying higher compensation required for exposure to joint crash risk.

The rest of this paper is structured as follows. Section 2 reviews the CM
approach and introduces the projection method. Section 3 derives the convergence
properties of the projection approach and establishes an equivalence with risk-
neutral density estimation. Section 4 extends the projection method to higher
dimensions and shows how joint risk-neutral moments can be estimated. Section 5
presents evidence on the finite-sample performance using Monte Carlo simulation,

and Section 6 presents the main empirical findings. Finally, Section 7 concludes.

2 Estimating nonlinear payoffs using projection

In this section, we introduce the projection method to estimate risk-neutral mo-

ments. We first review Carr and Madan (2001) to benchmark our approach.

2.1 Carr-Madan approach

Let g(St) denote a payoff at maturity 7" as a function of the realized stock price
Sr. Our object of interest is the conditional risk-neutral expectation E® [g(ST)].
The CM approach constructs a portfolio of puts and calls that replicates g(St)
state by state. By the law of one price, E? [g(ST)] equals the time-t value of this
replicating portfolio, which can be computed from observed option prices.

To implement this idea, CM start from a second-order Taylor expansion with



integral remainder,

9(St) = g(Fisr) + ¢/ (Fmr) (St — Fior)

Ft%T o0
+ / J"(K) (K — Sp)"dK + / J'(K) (S — K)" dK, (1)
0 Fy 1
where F; .7 is the time-¢ forward price for maturity 7. Using risk-neutral valua-

tion, we obtain

Fir oo
Eth(ST) = g(Ft—>T>+Rf,t—>T/O t 9" (K)Pisr(K) dK+Rf,t—>T/F 9"(K)Cip(K) dK,
- 2)

where Ry, ,r is the gross risk-free rate from ¢ to 7', and P,_,r(K) and Ci_p(K)
denote European put and call option prices with strike K and maturity 7.

In practice, option prices are observed only at a discrete set of strikes, so the
integrals in (2) are approximated by a trapezoidal rule. For example, for observed
put strikes Ko < --- < K; < Fy_,7p,

/0 )P (K) AK & 3 (K P () AK; (3)

J=0

K — K;_
AKy =K — Ky, AK;=K;—K;1, AK;:= % (1<j<J—1).

This is the trapezoidal discretization used in the CBOE’s VIX methodology and in
related model-free moment estimators. We refer to (3) as the CM approzimation
or discretization, to distinguish it from the exact CM formula in (2). Before

introducing our projection-based alternative, we illustrate how (3) is used in two

canonical applications.

Example 1 (Risk-neutral variance (SVIX)). Martin (2017) derives a bound on

the conditional expected market return using the risk-neutral variance:

ER, 7 — Rpyr > Var?R,_r,

fit—T

where R, = St/S; is the return on the stock. To compute this bound from the

data, it is necessary to calculate EtQ SZ. The CM approximation can then be used

with g(S7) = S% and ¢"(S7) = 2.

Example 2 (Risk-neutral entropy (VIX)). The VIX is a popular measure of

market uncertainty and is defined by the risk-neutral entropy of returns (Martin,



2017):

2
VIXE = = (log Ry — E? log RHT> . (4)

Entropy, just like variance, is a measure of variability of a random variable. In
this case it is necessary to calculate the expectation of a log-return, which can be
accomplished with the CM approximation using ¢(Sr) = log(St) and ¢”(Sr) =
—1/52. Britten-Jones and Neuberger (2000) further show that the VIX measures
the risk-neutral expected volatility from time ¢t to t + T.

In addition to these examples, there are important settings in which the CM
formula does not directly apply. The next two examples illustrate cases that are

central for empirical work.

Example 3 (Risk-neutral distribution). The estimation of the risk-neutral den-
sity is not covered by the CM formula because the payoff function necessary to
calculate the PDF corresponds to a “discontinuous function”. However, Breeden
and Litzenberger (1978) show that the risk-neutral CDF and PDF can be derived

from

0

Ft%T(K) = EtQ]l {Sr<K})=1+ Rf,t—)Ta_KOt—)T(K>
0 0?
fz§Q—>T(K) = ﬁthT(K) = Rfyt%TmCtﬁT(K)'

These formulas are widely used to estimate risk-neutral densities and, when com-
bined with additional information on physical probabilities, to infer pricing kernels
and risk aversion. We will show that projection can also be used to estimate the

risk-neutral distribution, thereby treating Examples 1-3 in a unified manner.

Example 4 (Risk-neutral covariance and correlation). For hedging purposes, it
is often useful to estimate the risk-neutral covariance between two stock returns
(see, e.g., Lustig et al. (2014)). In a different direction, the risk-neutral covariance
between the market return and an individual stock also allows us to infer that
stock’s equity premium when the representative investor has log utility (Martin
(2025)):

Cov¥® (R sr, Risr) .

EtRi,t—>T - Rf,t—>T -
Rf,t—>T

In this case, the CM formula neither applies because it is inherently univariate.

Generally, estimating a covariance from options remains an open problem.* Sec-

4In certain settings the covariance is identifiable from option prices, e.g., for quanto options
(Kremens and Martin, 2019), or one can estimate it by imposing additional constraints, such as
maximizing entropy (see Bondarenko and Bernard (2024)).

7



tion 4 shows how the projection approach extends to the multivariate setting,
allowing one to estimate these correlations.

It can also be of interest to estimate the joint risk-neutral distribution. How-
ever, there is no higher-dimensional analogue of Breeden and Litzenberger (1978).
We derive necessary and sufficient conditions on the option market that guarantee
a unique multivariate risk-neutral measure. Although these conditions are typi-
cally not met in practice, the projection approach can nonetheless yield accurate

approximations.

2.2 A simple illustration of the projection method

To illustrate the projection approach to estimating risk-neutral expectations of

non-linear payoffs, consider the following simple example.

Example 5 (Projection approach). Suppose the stock price at time T can take
four possible values: Sy = [10,11,12,13]. We aim to replicate the payoff of the
squared stock value, S%. Assume we can trade a risk-free asset with return R FioT
the stock itself, and a call option on the stock with strike K = 12. The squared
stock value and the payoffs of the tradable assets, denoted by the matrix X, are

given by
100 1 10 0
121 1 11 0
S2 = , X =
144 1 12 0
169 1 13 1

Clearly the market in this example is not complete because the value of S cannot
be replicated perfectly by a portfolio of tradable assets. To find a portfolio that
comes closest to replicating S%, a natural idea is to project S2 onto the space
spanned by X:

S2 ~ X, where = (X'X)"X'52,

Because the prices of the tradable assets are observable, we can estimate the risk-

neutral expectation of S% via
E?‘SQ ~ [17 Ft%Ta Rf,t—)TCtHT(lz)]B‘

This approximation follows from risk-neutral pricing because F;_,r = EtQ[ST] and
Cir(12) = (I/Rf,HT)EtQ [max(Sy — 12,0)]. In general, the projection estimate
will differ from the CM estimate, because in this example the CM approach always

assigns a portfolio weight of 2 to the option, regardless of the strike price.



The projection approach also generalizes the familiar put—call parity. For ex-
ample, if we replace S2 with the payoff of a put option, max(12 — Sr,0), the
projection on X yields zero error, thereby recovering the classical parity relation.
By contrast, put—call parity is not covered by the CM formula because the payoff

functions are not twice differentiable.

2.3 General projection approach

This section generalizes the example above and introduces notation. Let the ob-

served (ordered) out-of-the-money put and call strikes be
KP = [Kf,...,Kfp]/, KC = [ch,...,KSc]/,
k k

with K7 < Fy,r and K{ > F,_r, and define the total number of strikes by
k
ny, =nt +nf. Let

S = [s1,...,5,)

denote a researcher-chosen grid of stock prices at maturity 7. The choice of the
endpoints (s1, s,,) amounts to a stance on the relevant support of the risk-neutral
distribution; we discuss a data-driven choice in Appendix C. Importantly, this
allows us to estimate risk-neutral expectations even outside the range of observed
strikes.

Define the payoff design matrices for puts and calls on the grid s by
X;; = (KF — 594, Xg = (si—Kf)+, i=1,...,n,.

When it creates no confusion, we drop the superscripts P and C' on strikes. Let

1,,. denote an ns-vector of ones and define the state-by-state payoff matrix
X — [1nS s xP XC] € R X (2+nk)

If a put and a call share the same strike, including both is redundant given put—
call parity and the presence of the bond and stock columns. Let Y € R™ be the
payoff evaluated on the grid, Y; = g(s;). We compute the projection of Y onto

the column span of X:

Y=XB+8 B=(XX)'XY



Equivalently, this yields the approximation

9(Sr) ~ 1+ BaSr + ZBf(Kj —57)+ + ZBJC(ST — Kj)+ = g(5r). (5
j=1 j=1

Taking risk-neutral expectations on both sides, we obtain a projection estimate

of the risk-neutral expectation.

Definition 1 (Projection estimator). Let X collect terminal payoffs at T' (cash,
the underlying, and options) evaluated on a state grid, and let B be the OLS
coefficient vector from projecting the target payoff Y on X. Then the projection

estimator is defined by

P C

g T
EZ3(S7) = p1+ BaFir + Ry | Y BY P (Kj) + > B9C(K) | . (6)
j=1 j=1

Remark 1 (Constrained least squares). In some applications—such as estimating
risk-neutral variance—it is natural to impose that the estimate be nonnegative.
With very few options, the least-squares replicating portfolio implied by B can
produce a payoff that is negative over parts of the state space, which in turn
can yield a negative variance estimate. In such cases, it is natural to require the
replicating payoff to be nonnegative pointwise. This is achieved by solving the

constrained least-squares problem
mﬁin |Y — Xp||5 subject to X3 >0,

where the inequality is interpreted componentwise on the chosen state grid. This
convex quadratic program enforces a nonnegative replication in every state and,
hence, a nonnegative variance estimate. Similarly, one may impose direct restric-
tions on the portfolio weights, for example, the componentwise bound 3 > —c for

some ¢ > 0 to reflect borrowing constraints.

Remark 2 (Weighted least squares). The replicating portfolio in (5) penalizes de-
viations equally across states (stock prices). In applications it can be preferable to
penalize errors more heavily near the forward price—where the risk-neutral mea-
sure places more mass—and less heavily in the tails. This can be implemented

via weighted least squares:
Bwls = (X/WX)_lX/Wy>

10



where W = diag(wy, ..., w,,) collects state weights. The (infeasible) theoretically
optimal choice sets weights proportional to the risk-neutral density, w; o ft(iT(Si)~
A practical alternative is to use, for example, a Gamma weighting density cali-
brated so that its mean matches the forward price and its standard deviation
matches the ATM (forward) implied volatility. As we show below, however, the
choice of weighting affects the portfolio weights only at second order, and as the
strike grid becomes sufficiently dense the resulting replicating portfolio coincides

with the one obtained from the unweighted regression.

Remark 3 (Redundancy of option-implied regressors). Because the projection es-
timator is an OLS linear projection of the target payoff onto the span of the option
basis functions, the Frisch—-Waugh—Lovell theorem implies that adding any payoff
that already lies in this span does not change the fitted values. For example, the
CBOE VIX (Example 2) corresponds to a log contract that is replicated from
options. Hence adding log(Sr) as an additional basis element and using the VIX
price does not improve the estimation of a general payoff. By contrast, if there
were a genuinely tradable claim delivering the log payoff (or a variance claim)
whose price were not implied by the options in the basis, then adding log(Sr)
would enlarge the span and improve estimation. Notice that the CM formula does

not provide a generic way to exploit information from non-option payoffs.

To illustrate the benefits of the replicating portfolio obtained by projection
in (5) relative to the CM discretization in (3), Figure 1 plots both replicating
portfolios for a nonlinear payoff. The projection-based portfolio is nearly indis-
tinguishable from the true payoff across the entire domain, including outside the
range of observed strikes. In contrast, the CM approximation replicates the payoff
much less accurately, especially in the tails. The discrepancy arises because the
CM formula relies on a Taylor expansion around the forward price (see (1)), and
strike prices do not go far enough in the tails to yield an accurate approximation.

As a result, the risk-neutral expectation can be estimated with substantial error.

2.4 Continuous-state limit

To implement the projection method, the researcher needs to choose a grid of
possible future stock values, s. This is analogous to specifying the up and down
states in the binomial option pricing model. Since the grid can be made arbitrarily
fine, a natural question is what the discrete projection converges to as the mesh
size tends to zero.

Throughout, we denote the set of basis functions used for portfolio replication

11
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Figure 1: Replication of cubic payoff. The figure shows the function g(R;_,r) =
(2/3)R} . — (37/40)R% ., + (21/25)R; 7 (black), together with the projection-
based portfolio (blue) and CM portfolio (red). The approximations are based on
15 strike prices drawn from a uniform distribution. Dashed vertical lines indicate
the minimum and maximum strike values used.

by
Fom, = {1,ST,(K1 S0t (g 50) L (Sr - Kt (- Kng)+}.

When convenient, we index the basis as ¢; € Faqpy, fori =1,...,2+n;. To derive

the limiting value as max; |s;11 — s;| — 0, we make the following assumption.

Assumption 1. Let A = [Gmin, Gmax] be a compact interval in Ry such that

Amin < Kf and Gupax > kac, and all strike prices are unique. Moreover, g €

L2(A): [,9(5)*dS < oo.

Assumption 1 guarantees that the projection estimator is well defined when
n is sufficiently large. In particular, because the strike prices are assumed to be
unique, all basis functions are linearly independent over L?(A). The next result
establishes the continuous-grid limit. By slight abuse of notation, let an denote

the projection coefficients obtained from a grid of size n.

Proposition 1. Let Assumption 1 hold and define an inner product on L*(A) by

(61, 65) = / 61(S1);(Sr) dS.

12



If max; [s;v1 — s;| = 0 as ng — oo, then an — B, where
(G1,01) oo (D1 bren) || (01,9)
B, — : - : :

<¢2+nk7 ¢1> s <¢2+nk> ¢2+nk> <¢2+nk ) g>

Moreover, [ solves the minimization problem

B: arg min/A (g(ST) — Zkﬁjgbj(ST)> dSy. (8)

6€R2+nk

Longer proofs are delegated to Appendix A. The minimization property in
(8) states that 3 minimizes the L2-distance between g(-) and the basis functions.
In this sense, the basis functions optimally replicate g(-) over the entire domain.
This property is attractive because A is allowed to be much wider than the range
of available strike prices, which is beneficial if we believe the strikes only cover
a limited range of the stock price’s support. The approach of Carr and Madan
(2001) does not have this property. The continuous-state limit is also a convenient
tool in some of the proofs. However, for practical computations we will mostly

rely on the discrete approximation, as it is faster and numerically more stable.

3 Completeness, convergence, and distribution

estimation

This section establishes conditions under which options complete the market and
the risk-neutral measure is uniquely determined. We then derive the convergence
rate of the projection estimator for risk-neutral expectations. Finally, we show
how the same projection framework can be used to estimate the risk-neutral dis-

tribution.

3.1 Market completeness

Market completeness implies that every contingent claim can be hedged and,
equivalently, that the risk-neutral measure is unique. As is well known, options
complete the market for a single underlying security. For example, the CM port-
folio in (3) converges to the true risk-neutral moment under certain assumptions

on the strike prices. We now establish the analogous result for projection. Specif-

13



ically, if there is a portfolio of options, the risk-free asset, and the underlying
stock that perfectly replicates the payoff g(St), then projection will find it, as the

following proposition shows.

Proposition 2. Let A C R, be compact and let C(A) denote the space of con-
tinuous functions on A equipped with the sup norm ||g|| = sup,e4 |g(x)|. If the
strikes { K;}ik, satisfy

'Ilnin |z — K;| =0 for everyx € A as ng — 00,
j=1,...ng

then span(Fayy, ) is dense in C(A). Equivalently, for every g € C(A) there exists
[ € span(Foqn,) such that ||g — fu.ll., — 0.

Intuitively, the condition above means that strikes become dense in A, which
is necessary to replicate g well in the tails. Proposition 2 is a restatement of the
classical fact that piecewise linear splines are dense in C'(A) (see, e.g., Lebesgue
(1898)). It is also more general than the CM approximation, which requires addi-
tional smoothness (e.g., g twice differentiable a.e.).

The replication property in Proposition 2 connects to market completeness,
which means that the risk-neutral measure is unique (Back, 2017). When the
prices of options are given and each contingent claim can be replicated, the risk-

neutral measure is indeed uniquely pinned down.

Corollary 1 (Market completeness). Let A and the strikes be as in Proposition 2,
and suppose absence of arbitrage. If two risk-neutral measures agree on the prices
of all traded payoffs in span(Foyy,) for all ny, then they coincide on C(A) in the

limit, and therefore induce the same risk-neutral distribution on A.

This result is closely related to the Breeden and Litzenberger (1978) formula
from Example 3. While that formula is theoretically elegant, its practical im-
plementation can be challenging because recovering densities requires numerical
differentiation of option prices, which is often unstable. For this reason, researchers
and practitioners commonly use the CM approximation to compute risk-neutral
expectations. However, the CM approximation is not designed for discontinuous
payofts such as indicator functions and therefore does not directly deliver estimates
of the full risk-neutral distribution. In finite samples, this can lead to substantial
differences between the risk-neutral expectation implied by Breeden and Litzen-
berger (1978) and that implied by the CM approximation, which is undesirable. As
shown in Proposition 7 below, the projection method provides a unified approach

that closes this gap.

14



3.2 Convergence rate

In this section, we establish the rate at which the estimated risk-neutral expecta-
tion converges as a function of the number of strikes. From approximation theory,
we expect the convergence rate to depend on the smoothness of the underlying
function (see, e.g., Canuto et al. (2006, Chapter 5) or Trefethen (2018, Chapter
10)). To facilitate the comparison with the CM formula, we assume that the un-
derlying function is twice continuously differentiable. The following proposition

derives the convergence rate of the projection approach under this assumption.

Proposition 3. Suppose g € C*[amin, Gmax] and that the risk-neutral density is
square-integrable on A: faamax f&T(x)Q dz < co. Let A = max; K1 — K;, where

the strikes are ordered amin < K < Ky < ..., K,, < Gmax, and assume that
A =01/ng), Ki — amin = O(l/ni/S), and Gmax — Ky, = O(l/n4/5). Then as

nE — 00
P lg(Se)1 (Sr € )] = B2 (51 (5r € A +0 ().

where § is the function estimated by (5).

Proposition 3 can be viewed as a quantitative version of the statement that
options complete the market (Corollary 1). For the CM formula, the integral
representation can be approximated using the composite trapezoidal rule, which
is the method employed by the CBOE to calculate the VIX. Under the same
assumptions, the CM approximation with the trapezoidal rule attains the same

convergence rate.

Proposition 4. Let everything be as in Proposition 3, and denote the CM repli-
cating portfolio by

Gom(St) = 9(Fior) + ¢ (Fisr) (St — Fior)
+ Y AR g(K) (K- Sr)T+ Y AK;¢(K)) (Sr— K;)

JKG<Fi 7 JK;>Fr

where
Kit1—Kj

Kt =2 -1

AKJZ Ky — Ky, J=1
Knk - Knkfl, j = Ng.
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Then, as n, — 00

. 1
P o(S1)1 (51 € A)) = B [jen(S0)1.(51 € 4+ 0 ().
k
Because projection and the CM approximation attain the same convergence
rate, it seems plausible that the coefficients are similar when there are lots of
options in the market. In fact, under certain assumptions one can show that
asymptotically the projection approach and the CM approximation attach the

same weights to each option in the portfolio.

Proposition 5. Let A = [amin, Gmax] and let amm < Ky < -+ < K, < Gmax be

uniformly spaced with
h=K,— K,y (i=1,...,n), Ko = Gmin, Kn,41 = Gmax-

Assume g € C*(A) and let § be the L*(A)-projection of g onto span(Fayn, ),
A A nk
§(x) = B+ o + Y Ailz — Ki)4.
i=1

Then for interior indices 1 = 2,...,n; — 1,

’A}/i = hg"(Ki) +O(h3) as h — 0,
——
CM weight
where the O(h3) term is uniform in i = 2,...,n, — 1. Moreover, at the boundary

one has

A1 = hg"(K;)+0O(h?), An, = h g"(K,,) +O(R?), as h — 0.

——
CM weight CM weight

This result may appear surprising at first because the projection method seems
global, in the sense that each coefficient estimate depends on the full set of strikes.
However, results from the series regression literature suggest that it depends on
the number of basis functions: when the number of strikes is small the estimator is
effectively global, whereas as the strike grid becomes dense the projection behaves
increasingly like a local method (see, e.g., Hansen (2022, Section 20.7)).

Why, then, prefer the projection method? First, the results above are asymp-
totic and may not accurately describe the finite-sample behavior that is rele-

vant in practice. Second, Proposition 5 relies on idealized assumptions, such as
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a uniformly spaced strike grid and a mesh that becomes dense all the way to
the endpoints of A. When either assumption fails, as is typical in option data,
the asymptotic approximation in Proposition 5 need not hold, and the implied
portfolio weights can differ substantially from those obtained by a CM type ap-
proximation.

It is therefore desirable to derive a finite-sample bound that does not rely on
these assumptions. The next proposition provides an exact finite-sample bound

on the projection error.

Proposition 6. Let g € C(0,00), A = [Amin, Amax] With amm < K; < ... K, <
Umax, and let g be the L*(A)-projection of g onto Foip,. Suppose that E? lg(ST)| <
0, EtQST < 00, and that

E? [(19(Sr)| + 1a(Sr)) 1 (Sr ¢ A)] <e.

Then
ERg(Sr) — B23(Sr)| < & + 4dist(g, Forn,), )

where

dist(g, Fain,) = inf {Iglcleaj( lg—fl:f€ .7:2+nk} .
If the support of St is contained in A, then (9) holds with e = 0.

The tail assumption effectively says that A, which can be chosen by the re-
searcher, covers most of the support of S; and that the contribution of the risk-
neutral moment outside A is small. The main message of Proposition 6 is that
the estimation error is controlled by how well g is spanned by the given option
basis functions (together with the constant and linear payoffs). For example,
suppose the only option payoff observed is a call option with strike K, and let
g(St) = (K — Sp)". Using the identity

(K —Sp)" =Sy — K)" + K — Sy,

the put payoff lies in the span of Foi,, . Hence, dist(g, Foyn,) = 0, and the
estimation error is zero. This exactly recovers put—call parity and illustrates that
the bound is genuinely finite-sample: it only uses the actually traded payoff(s),
without any asymptotic market completeness assumption.

A clean substitute for the CM approximation appears unlikely, though we do
not have a formal proof. Under the stated assumptions, no analogue of Propo-

sition 6 can hold for CM, since the formula relies on second derivatives of g and

17



thus defines an unbounded operator with respect to the sup-norm.® In sum, the
projection error is well controlled in finite samples and leads to a notion of finite
sample near-optimality, while a clean substitute for CM is not available. The

simulation results in Section 5 also confirm this.

3.3 Estimation of the risk-neutral CDF and PDF

The convergence rate and error bound derived above are valid when the function
is twice differentiable, or merely continuous. However, the projection method need
not be restricted to such functions. A primary motivation to broaden the class of
estimable functions comes from estimating the risk-neutral distribution, which re-
quires approximating indicator functions. Since we are ultimately interested in the
risk-neutral expectation of a function, the averaging inherent in the expectation
operator suggests that the projection approach can still estimate the risk-neutral
distribution reliably, even when ¢ is not smooth.

More precisely, consider g(Sr) = 1 (Sy < x), which is used to compute the
risk-neutral CDF: F2 () = E?1 (S; < ). In this case, the projection estimates

obtained in (7) will also depend on z, because

xT

(@10 a) = [ SrL(Sr<ajasr= [ ¢y(s)dsr.
A Gmin
We will let 3(z) denote the coefficient estimate corresponding to the function
(¢j,1 (- < x)). The risk-neutral CDF is then simply estimated by

ny,

Ft%T( ) 51(9‘5)4‘52( )FHT"‘RJ“ t—T Z 5 PHT + Z 5 CHT )
7j=1

(10)

The following proposition shows that F&T( ) obtained in this way satisfies many

of the natural CDF requirements.
Proposition 7 (Risk-neutral distribution). Let Assumption 1 hold. Then:

(i) The estimated CDF satisfies the natural boundary limits

hm Ft%T( )=0, and lim F2(z)=1.

x—>a T—Amax

SEven if the assumptlons were strengthened to, say, g € C?(0,00), a finite-sample bound
in the spirit of Proposition 6 still appears unlikely, because the operator that sends g to
> 9" (K;) (Kiyq1 — K;) is unbounded as a linear functional on (C'(A), || - ||« ); one can construct
sequences of bump functions with ||g||sc bounded but >, ¢" (K;) (K41 — K;) diverging.
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(it) F2 . (x) is continuously differentiable on the interior of A, with density es-

timate f2 . = (F2.,)'; moreover, f2,, is piecewise linear.

(11i) (Moment consistency) The estimated value of a nonlinear contract in (6)

equals the moment implied by the estimated distribution:

E? [§(Sr)1 (Sr € A)] = / g(x) dEQ 1 (2).
A

Property (iii) is the most important: for any finite set of strikes, the estimated
risk-neutral distribution produces the same moment as obtained by directly ap-
proximating ¢.° This moment-consistency is typically not guaranteed by existing
risk-neutral density estimators. In particular, the value of a nonlinear contract
computed from a density estimate will almost never coincide with the estimate
given by the CM method. The CM approach is often used in applications where
the full risk-neutral distribution is not of primary interest, as it is empirically
more robust (see, e.g., Martin (2017)). This discrepancy between density-implied
moments and CM-implied moments calls into question the accuracy of the density
estimate. By construction, the projection approach avoids this issue and yields a
density that is consistent with any moment obtained by direct projection. Fur-
thermore, our density estimator requires only mild assumptions on the underlying
distribution: it is sufficient for the first moment of the stock price to exist.

Despite these desirable properties, the projection-based CDF estimate need
not be monotone. In simulations, violations of monotonicity occur mainly in
the extreme tails, where sparse strike coverage makes the distribution hard to
estimate. A remedy is to apply the rearrangement approach of Chernozhukov
et al. (2013), which amounts to sorting the estimated CDF values on the grid
to enforce monotonicity. In fact, Chernozhukov et al. (2009) show that, unless
the original estimate is already monotone, the rearranged CDF has better finite-

sample properties.

4 Completeness in multiple asset markets and

joint dependence

It is of great interest to generalize the projection approach to higher dimensions.

For example, the risk-premium of an individual return can often be related to its

6That is, using the estimate in (6).
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risk-neutral covariance with the market return (see Example 4). The key challenge
is that the claim paying S; 1S9 7 is not traded; hence EtQ(SLTSZT) needs to be
identified from tradable options.

A naive extension of the univariate approach is to consider a projection of

g(S17,Sa.1) = S117Ser onto
n}: nkC'
§(Sur, Sor) = Bo+ iSir+ Y B (G = Sir) ™+ ) B (Sir = Kj)'
Jj=1 j=1

n¥ n¢
+ 52Sar + Y By (Kj = Sor) ™+ Y 85 (Sor — Kj). (11)

j=1 j=1

Notice that the strike prices can be different across assets and basis functions, but
we suppress this dependence for notational clarity. The risk-neutral expectation
of each of the basis functions is known, and thus provides a way to estimate
E?SLTSQ,T- However, the next proposition shows that this separable specification

cannot capture dependence: the implied correlation is always zero.

Proposition 8 (Zero correlation). Assume that the support of Sir and Syr
be defined on compact intervals with midpoints equal to E?SLT = Flyr and
E?Sg;p = Fyy o respectively. Let the projection of SirSer be defined by g in
(11), then

E? [§(Sir, Sor)) = (BZS1r) (E2Sar)

Intuitively, options on the individual stocks are sufficient to identify the marginal
distributions, but not the joint distribution. To estimate a nonzero correlation,
the basis must include nonlinear terms that depend on both assets or incorporate
multi-asset instruments such as basket options.

To incorporate additional information that depends on the joint distribution
of returns, options on the S&P500 can be used. As Kelly et al. (2016) noted,
there are eleven sector ETFs that also have options available, and whose weighted
returns sum to the S&P500 return:

11
Z w; g7 = Ry,
i=1
where w;; and R;;,r denote the weight and realized return on sector ETF 4,
and R;_,7 represents the return on the market portfolio. Thus, options on the
S&P500 reveal information about the joint distribution of returns. In combination

with options on the individual sectors, they allow more precise inference about
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correlations. Nevertheless, the information conveyed by options on the market
index and on the sectors is limited: with three or more sectors, correlations cannot
be identified from these derivatives alone. We establish this non-identification

result below.

4.1 Identifying joint dependence from options on multiple

portfolios

We are looking for an extension of Proposition 2 that is valid in higher dimensions.
In particular, we would like to understand when option payoffs are rich enough to
approximate multivariate contingent claims, and how the set of available portfolios
governs what can be learned about joint dependence. Suppose, as in practice, that

there are d sectors (or stocks) that span the market return:”

d
Z wi,tRi,HT =R 1.
i=1
Assume now that for each sector, as well as for the market return, the assump-
tions of Proposition 2 hold, so that any continuous function of the sector return
(or market return), can be uniformly approximated by options. By combining the
options on each of the sectors and on the market return in a portfolio, we thus

conclude that the set of option payoff functions span the space
M(Q) = span{x — f(dx) : a€Q, fe C(R)},
where 0 C R? is the set of available portfolio directions. In our baseline setting,

Q={e,...,eq, w}, wy = (Wi gy .., Way), (12)

where e; corresponds to the ith basis vector in R? (i.e. it gives full weight to sector
i). Functions of the form f(a'z) are known as ridge functions in the approximation
theory literature (Pinkus, 2015). Thus, the question of multivariate spanning by
simple options can be phrased as a question about when ridge functions with
directions in 2 are dense (in the uniform topology on compact sets). The following
result by Vostrecov and Kreines (1961) provides necessary and sufficient conditions
(see also Lin and Pinkus (1993)):

"When dealing with sectors, there are thus d = 11 sectors spanning the S&P500 return.
When dealing with individual returns, there are d = 500 returns spanning the S&P500 return.
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Theorem 2. M(Q) is dense in C(R?) in the topology of uniform convergence on

compacta if and only if no non-trivial homogeneous polynomial vanishes on §.5

In the special case d = 2, for the set of option payoffs to be dense Theorem 2
requires {2 to contain an infinite number of pairwise linearly independent vectors.
This result is related to Ross (1976) and Martin (2018, Result 2), but is stronger,
because the condition is necessary and sufficient. Furthermore, Theorem 2 applies
to any d > 1, not just to the case d = 2. In applications, we therefore cannot hope
to approximate the price of every multivariate contingent claim arbitrarily well,
since we only observe the finite set of twelve direction vectors in (12) associated
with the d = 11 sector portfolios. Nevertheless, it is still possible to approximate
the payoff of an arbitrary claim using projection on the sector and market option
payoff functions. Furthermore, Theorem 2 suggests that better approximations
can be obtained if we also consider options on a portfolio of sectors, where the
weights are different from the market portfolio. Recently, options were introduced
on an equally weighted sector portfolio (called “EQL”). This additional variation

can allow us to obtain better estimates of the sector correlations.

Remark 4. It was noted by Ross (1976) and Nachman (1988) that payoffs formed
by products of call options on multiple assets are sufficient to complete the market.

In particular, derivatives with payoffs of the form
(Sir — Ky)* (Sor — K2)+ )

for arbitrary strikes K; and Ky, together with standard call options on S; r and
Sa.7, span all contingent claims in dimension two.” In our framework, this market
completeness result follows directly from Proposition 2 and the fact that tensor
products of spline basis functions are dense in the space of continuous functions
on compact sets. This argument immediately generalizes to arbitrary dimension d
by considering tensor products of spline basis functions in R?. For example, in R3,
market completeness would require observing prices of derivatives with payoffs of

the form
(Sir — K", (Siz — Ki) " (Sjr — Kp)©, (Sir — Ka) ™ (Sjr — Kj) " (Spr — Kp) T

for all choices of indices 4, 7, p and strikes K;, K, K,. In practice, however, deriva-

tives involving products of options on more than one underlying are not traded

8 A polynomial in several variables is homogeneous if all monomials have the same total degree.
9Bakshi and Madan (2000) refer to such securities as correlation options.
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on major exchanges and are typically only available over the counter. For this
reason, we focus on market completeness achieved using simple options, which are

widely traded and liquid.

4.2 Identification of risk-neutral covariances and correla-

tions

Theorem 2 suggests that it is impossible to identify the price of an arbitrary claim
using options, unless we observe an infinite number of different portfolio options.

However, in specific cases, such as the covariance in two dimensions, it is
possible to obtain positive results. Furthermore, in higher dimensions, one can
still approximate the covariance well even if it is not strictly identified. Focusing
on two dimensions first, and letting R, = w1 Ry 17 +wa 1 Ro ¢, the following
identity obtains:

2
1 Wiy Wy o

2 2
Ry
t—T 1,t—T 2,t—T"
2w17t - 2 A let A

)

Rl,t—>TRt—>T =

The prices of each of the payoffs on the right-hand side can be inferred from options
on the market index, sector 1, and sector 2, respectively. Hence, in this case, the
covariance between any of the returns can be identified from option prices.'’
Generally, the question of identifying the price of a payoff thus depends on
whether there is an exact algebraic identity linking the payoff function and a lin-
ear combination of ridge functions. It is useful to have a simple algebraic condition
that determines whether such a separable identity holds. Diaconis and Shahsha-
hani (1984) derived the following necessary and sufficient condition for a function

g(z,y) to admit a representation of the form

g(z,y) = giaix + biy)
=1

In this case, the following differential identity is necessary and sufficient:

(02 a2 )i o

=1

When d > 3, the situation becomes more involved. Necessary and suffi-

10This is unsurprising, since VartQRt_m = witVartQRLt_m + w;tVar?RQ,t_m +

2wy wa ¢ Covf2 (R1t—71, R2+— 1) and because each individual variance is identified from option
prices, the covariance must also be identifiable.
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cient conditions were derived by Lin and Pinkus (1993), although they are not
straightforward to verify in practice. For completeness, we state their result in
Appendix A.10 and provide a more elementary argument showing why correlations
in dimensions d > 3 cannot be identified solely from options on the individual sec-

tors and the market portfolio. The following Proposition summarizes this result.

Proposition 9 (Non-replication of covariance payoff). Let d > 3. Fix i €
{1,...,d} and a weight vector w € R? such that there exist two distinct indices
J. k # 1 with w; # 0 and wy, # 0. Consider the function class

F= {Zgz(wz) +h(w-x):g.,he CUR)}-

z=1

Then the polynomial g(z) = x;(w-x) is not in F. Consequently, no static portfolio
formed from Furopean options on each single return x, and on the market return

w - x can replicate the payoff x;(w - ).

Remark 5. Despite this non-identification result, Appendix B proposes a correla-
tion estimator that can nonetheless approximate the risk-neutral correlation ac-
curately. There we also show how the projection approach generalizes the CBOE

equicorrelation estimator.

4.3 Completeness in FX markets

We now extend the above results to foreign-exchange options. Let S r denote
the EUR/USD exchange rate, So 7 the GBP/USD rate, and S3r the EUR/GBP
rate at maturity 7. By triangular no-arbitrage, S3 7 = S1.7/S2 7. Hence, options
on EUR/GBP reveal joint information not captured by options on EUR/USD
and GBP/USD, which only reveal the marginal distribution. Incorporating this
additional source of variation is thus expected to yield a better estimate of the
covariance and correlation. Throughout we use the convention that S; and Sy are
quoted in USD, while S5 is in GBP units.*!

With Ry r and Rf, ., denoting the US and UK gross risk-free rates, the

European call prices are

1 $ ]
Cit%T(K) = th TEtQ (Si,T - K)+ , 1= ].7 27
=

1
Rf,taT

£
CEr(K) EY (Ssr — K)T,

1 This convention is the same as for the Bloomberg options data that we use in Section 6.
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where Q¥ and Q% are the risk-neutral measures using the US and UK money-
market accounts as numéraires, respectively. This distinction is needed because
EUR/GBP options are GBP-quoted.

Using the change of numéraire result (Shreve, 2004, Chapter 9), it follows that

the Radon-Nikodym derivative between the two risk-neutral measures is given by

dQs
fT/ dQ*

where F; denotes the information set up to time ¢. Using this result, we obtain

dQ?’

o Rf,t%T %
d@*

= —7 ,
Fi Rf,t—>T SZ,T

the following expression for a judicious choice of payoff function under @Q*

Sl,T * o Rf’t*)T Q£ +
Sar S —— 59 E; [(53,T - K) }
2T

T ptL
R t—T

= Rp1-152:C 0 (K).

$
E/

Hence, the reason we consider this specific type of payoff is that the right-
hand side involves quantities that are all observed in the market. Notice how
the change of numéraire ensures that the quantity on the right is in dollar units,
because Ss; converts GBP prices to USD. A key advantage of projection is that
it can incorporate the state-dependent change of numéraire kernel when com-
bining options quoted in different currencies, yielding a theoretically consistent
USD-denominated replicating portfolio. By contrast, much of the existing FX lit-
erature effectively ignores this state dependence (or treats the conversion kernel as
approximately constant) when extracting dependence measures from option prices
(e.g., Mueller et al. (2017)). Further, it is possible to obtain the expected value of
EUR/USD and GBP/USD under the USD risk-neutral measure because

3 R t—=T $ R t—T
EY Sir = Ré —= S = Fisor, EY Sor = Rf; —= S = Fyy .,
fit—T fit—T

where F;;_,r denotes the T-maturity forward FX rate for pair ¢ = 1, 2.
The foregoing discussion suggests a way to obtain the covariance and correla-

tion between EUR/USD and GBP/USD. Namely, project the function

(S1r — Fiaor) (Sor — Foyor)
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on basis functions of the form

S +
L, Sir, (Sur = K),Sor, (Sor = K)', Sar (Sl—T - ) :
2,T
Upon taking risk-neutral expectations using the US money market as numéraire,
all expectations of the basis functions reduce to market observables: constant, for-
ward levels, USD call prices multiplied by a known discount factor, and EUR/GBP

call prices multiplied by known discount and FX conversion factors. In particular,
Q" Q*
Covy (51,13 S2,T) =E; (Sl,T - F1,HT) (Sz,T - FQ,HT)

ny,
~ Po+ PiiFiisr + Ryt Z Bl,j+1ci$,t_>T(Kj)

Jj=1

Nk
+ PeiFo st + Rprsr Z P 1Cs i (K;)

i=1

ng
+ F2,t—>TR}€,HT Z 53,jC£iT(Kj)'

j=1

The number of options and the strike grids generally differ across currencies; we
omit this from the notation to avoid clutter.

If options on all three bilateral rates are available and, for each rate, the
assumptions of Proposition 2 hold, then static portfolios in these options can

uniformly approximate any payoff of the form

g(S17,S21) = 1(S1r) + 92(S27) + Sar - g3 (%), (13)
with g; continuous. This function class, however, is not universal on C(A) for a
compact A C R3, with nonempty interior. In particular, the function g(z,y) = zy
cannot be represented by the display above. Thus, the covariance of exchange
rates is not strictly identified from vanillas on the three bilateral rates alone.
Nevertheless, we find in simulations that projecting S; 7521 onto the class (13)
yields highly accurate approximations of the covariance and correlation. In our
empirical application, we exploit this observation to estimate conditional risk-

neutral correlations between exchange rates.
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5 Simulation

5.1 Univariate projection

To illustrate the benefits of the projection based approach, we consider the problem
of approximating the value of the SVIX and VIX discussed in Examples 1-2. The
Monte-Carlo experiment randomly draws strike prices from a uniform grid with
cardinality {10,20,...,130}. We also consider the case where the strike grid is
equally spaced.'? This allows us to study the approximation error as a function
of the number of strikes available in the market. In addition, we also consider a
design where the number of strikes is fixed, but the range of the strike prices is
increasing to cover a bigger part of the distribution’s support.

Based on the strikes, we obtain the corresponding call and put option prices
from either the Black and Scholes (1973) model or the stochastic volatility and
jump (SVCJ) model of Eraker et al. (2003). The latter model incorporates jumps
in both the return and volatility dynamics which makes estimation more chal-
lenging relative to Black-Scholes. More details on the simulation and calibration
of these models are given in Appendix E. The accuracy of the approximation for

each number of strikes is measured by the relative error,

SVIX — SVIX
Relative error = SVIX ,

where SVIX is the SVIX estimate obtained by either CM or the projection method.
The relative error for VIX is defined analogously.

Figure 2 illustrates the results. Panels 2a—2d show convergence as the number
of strikes increases, while the strike range remains fixed at 90% of the support.
When the strike grid is equally spaced, the relative errors of both methods are
roughly half as large as when the strikes are drawn uniformly at random, but both
designs convey the same message. The convergence of the CM method is gradual
and levels off at a relative error of about 10%. By contrast, the projection approach
stabilizes already around 20 strikes, at which point its relative error is roughly an
order of magnitude smaller. At 130 strikes, the relative error remains close to 2% in
all cases. Moreover, for nearly all strike counts, the projection estimate is pointwise
closer to SVIX/VIX than the CM estimate. Because both methods underestimate

2Tn our implementation, A covers 99.8% of the distribution’s support, while observed strikes
extend only into the 5% tail. Thus Proposition 5 does not apply, and CM and projection weights
can differ substantially.
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SVIX/VIX due to the limited strike range, the projection estimate—being closer
to the truth—is almost always larger than the corresponding CM estimate. In the
empirical application in Appendix C, we find the same behavior in actual data.

The strike range appears more important for the convergence rate of the pro-
jection approach, as shown in Panels 2¢ and 2f. In this case, convergence is much
faster as the strike range increases while the number of strikes is held fixed at
ng = 30. This result can be understood via the proof of Proposition 3, which
shows that the error arising from the tails converges to zero faster than the error
induced by strike spacing. When the strike range covers almost the entire support,
the relative projection error is close to zero and roughly 63 times smaller than for
CM.

By contrast, the CM approach shows little improvement when the strike range
increases. As the range widens while the number of strikes remains fixed, the aver-
age strike spacing becomes larger, which offsets the benefit of better tail coverage
because the accuracy of the integral approximation deteriorates as the spacing

increases. '

5.2 Multivariate projection for exchange rates

We simulate exchange-rate outcomes under the risk-neutral measure from a bi-

variate normal distribution:

Sy 1{7]0.1-0.05-p  0.05% '

In each Monte Carlo iteration, we draw the correlation independently as p ~
Unif(—1,1). For the option inputs, we take five strikes each on Sy, Sor, and
Si1/S2r. The strikes are evenly spaced between the 5th and 95th percentiles
of the respective marginal distributions. This choice mirrors OTC FX practice:
quotes out to the 5-delta call and 95-delta put (under forward-delta conventions)
roughly correspond to the 5th and 95th percentiles for 1-month tenors. The ap-
proximation grid is taken to be equally spaced between the 2nd and 98th per-
centiles of each variable; for two-dimensional quantities we use the tensor product

of the univariate grids.

13In unreported simulations, we replace the trapezoidal rule in the CM approximation by
Simpson’s rule. The numerical results are very similar in all cases and the projection method
continues to dominate.
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Figure 2: MSE of approximation.
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The figure shows the convergence rate as

a function of the number of strikes (upper and middle panels) and as a function
of the strike range (bottom panels). In the top panels, the strike grid is equally
spaced, while in the middle panels the strikes are uniformly distributed.

We then project the payoff (S;r — 1)(S27 — 1) onto the span of the payoffs

1a Sl,Ty (SI,T - K1>+ ) 52,T7
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with strikes {K7, Ks, K3} generated as above. To recover the correlation, we
also estimate the standard deviations by projecting (S; 7 — 1)? onto the constant
function, Sy r, and options on Sy r (and analogously for Ss ).

In addition, we consider a setting where Sy 1 is generated as above and then
perturbed to 5'2,T = Sor + O.lSiT. S’Q,T is further normalized so that the mean
is 1. We estimate the correlation between S and S'Q,T to introduce nonlinear
dependence and verify that our results are not driven by the normality assumption.

The upper panels in Figure 3 report results from 1,000 Monte Carlo simula-
tions. In both panels, the projection approach recovers the true correlation with
high accuracy: the scatter points lie nearly on the 45° line. This is encouraging
because the correlation is not exactly identifiable within the restricted function
class (see Section 4.3). We conclude that projection delivers an excellent approx-
imation to the true correlation in the FX setting, irrespective of the underlying
distribution of the data.

In the bottom panels, we use the same generated data to estimate the joint
probability that both returns are below a certain threshold, which can be in-
terpreted as a measure of joint tail risk. Specifically, we estimate P(S;r <
0.95, Sor < 0.95), by projecting the payoff

1(S1p < 0.95) 1 (Syr < 0.95)

onto the basis functions. The bottom panels of Figure 3 report fitted versus true
probabilities. The estimates line up closely with the 45° line—albeit slightly less
tightly than for the correlation results—indicating that the projection method

recovers joint tail probabilities with high accuracy.

6 Empirical application

This section estimates risk-neutral correlations and tail risk using the method of
Section 4.3 in the FX setting.

6.1 Data collection

From Bloomberg we obtain daily end-of-day composite (OTC) quotes for money-
market deposit rates at 1 month EUR, USD and GBP. We also retrieve daily
spot FX rates and construct 1 month forwards for EUR/USD, GBP/USD and
EUR/GBP via covered interest parity.
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Figure 3: Estimated correlation and joint tail risk in exchange-rate mar-
kets. FEach point is one of 1,000 Monte Carlo simulations. Top: true correla-
tion versus its projection-based estimate. Bottom: true joint left-tail probability
P(S1r <0.95,5 1 <0.95) versus its projection-based estimate.

For FX options, we use Bloomberg’s OTC constant-maturity implied volatili-
ties at 1M. Each day we observe the standard smile pillars: the ATM delta-neutral
volatility and the 10- and 25-delta risk reversals (RR) and butterflies (BF), quoted
under the spot-delta, premium-included convention. When fixed-delta call/put
vols are not directly provided, we recover them from ATM, RR and BF via the
standard identities. We then map quotes to strikes and compute option prices
using the Garman—Kohlhagen model, the reference model with respect to which
the implied volatilities are quoted.'* For each currency pair, this yields only five
strikes per day, yet the simulations indicate that projection remains accurate un-
der such sparse strike coverage. Our sample spans July 2008 to April 2023 and
contains 3,721 trading days. Finally, returns on each currency are defined relative

to the forward price: R;;,r = S;r/F;—r. Thus, by construction, E? Riir =1

14Using the Garman-Kohlhagen formula in this step simply converts implied volatilities into
option prices and does not impose Garman—Kohlhagen as the true pricing model.
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6.2 Correlation estimates

Before presenting the estimates, it is instructive to assess the quality of the projec-
tion approximation in our sample. We take option quotes on the three exchange
rates on July 1, 2008 (the first day of our sample) and project the covariance
payoff

(Ritsr — 1) (Rogsr — 1)

onto the span of the 15 observed option payoffs, together with the cash position
and the two underlying exchange rates. The left panel of Figure 4 plots the true
covariance payoff, while the right panel plots the payoff of the replicating portfolio
obtained by projection. The contour shapes are highly similar overall, and the
projection captures the key tail regions, corroborating our simulation evidence

that the risk-neutral covariance is well approximated from the available options

!il.

in the exchange rate setting.
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Figure 4: Covariance replicating portfolio. The figure shows the covari-
ance payoff (left) and its projection-based replicating portfolio payoff (right) for
EUR/USD and GBP/USD gross returns. Option strikes and forward prices are
from July 1, 2008.

Panel 5a reports the 1-month forward-looking risk-neutral correlation between
the EUR/USD and GBP/USD exchange rates over time. As expected, almost all
estimates lie below one; the few instances slightly above one are consistent with
small measurement noise, as in our simulations. The sample-average correlation is
about 0.7, in line with the view that major exchange rates co-move due to a handful
of common risk factors. The lowest estimate—about 0.2—occurs just before the
Brexit referendum, on June 9-10, 2016. Panel 5b indicates that the decline in

correlation is driven primarily by a sharp increase in GBP/USD volatility.
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The high frequency of option quotes also lets us zoom in on short-lived episodes.
One stands out: a sharp decline in the 1-month risk-neutral correlation between
December 12, 2012 and February 14, 2013, from nearly one to roughly 0.4. As
the right panel of Figure 5 shows, this drop was not accompanied by a spike in
the (annualized) volatilities, pointing to a genuine change in dependence rather
than a level-volatility effect. Several contemporaneous developments are consistent
with this interpretation: unexpectedly weak UK Q4-2012 GDP (weighing on GBP)
alongside improving euro-area conditions such as the tightening peripheral spreads
and the first LTRO repayments, which would have supported EUR. We therefore
view this episode as a period in which currency-specific risks dominated shared

USD drivers, temporarily depressing the implied correlation.

6.3 Tail probability estimates

Second, we examine the joint risk-neutral crash probability, defined as the prob-
ability that both EUR/USD and GBP/USD monthly returns are less than 3%.
The estimate from our projection approach is shown in red in Panel 5¢ (labeled
“dependent”). For comparison, we also plot the independence benchmark (labeled
“independent” ), obtained by multiplying the estimated marginal crash probabili-
ties. The figure shows that accounting for dependence is crucial: the joint (depen-
dent) probability is typically well above the independence benchmark, especially
during periods of market stress.

To evaluate the informativeness of the joint risk-neutral crash probability, we

estimate the forecasting model
Crash; .; = Py + pfiRiskNeutralProb; .r + &7, (14)

where Crashy = 1 (Ry 7 < 0.97) 1 (Ro i1 < 0.97). The regressor is either the
dependent (option-implied) joint crash probability or the independence bench-
mark (product of marginal crash probabilities). Results appear in Table 1. The
dependent joint probability is a significant predictor, and the associated R? is
substantially larger than for the independence benchmark. If physical and risk-
neutral crash probabilities coincided at each date, the restriction 5y, £1] = [0, 1]
would hold; the bottom row reports the p-value of this Wald test, which is not

rejected only for the dependent regressor. We also report an out-of-sample R?,
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Figure 5: Daily risk-neutral correlation, volatility, and crash risk (30-day
horizon). Panels (a)—(d) plot: (a) the 30-day risk-neutral correlation between
EUR/USD and GBP/USD; (b) the corresponding annualized 30-day risk-neutral
standard deviations for each exchange rate; (c) the 30-day joint crash probability
under independence (pgur pgp) and under the option-implied dependence struc-
ture; (d) the option-implied (dependent) crash probability alongside the physi-
cal crash probability estimated from OLS. The estimates in this last panel are
smoothed using a 30-day moving average.

R% g, defined as

> r(Crash,r — @t_,T)2

R2oos =1- Crash ’
> r(Crash;_,; — Crash;_,r)?

where forecasts are Crash, ,; = Ri skNeutralProb;_ ,r, and Crash,_,7 is the histor-
ical prevailing crash probability computed using an expanding window that begins
after 1,000 historical observations are available. This design avoids any in-sample
bias and yields a strict out-of-sample evaluation. In both specifications R%,,q is

positive, with larger values when using the dependent covariate, indicating that
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risk-neutral probabilities outperform the prevailing-mean benchmark.

The last column of Table 1 includes both predictors; the incremental R? gain is
modest, and the coefficient on the independence benchmark enters with the oppo-
site sign. We conclude that the option-implied (dependent) joint crash probability
performs markedly better, providing evidence that it helps forecast joint physical
tail risk.

Panel 5d plots the inferred physical joint crash probability based on the re-
gression with the dependent (option-implied) covariate, alongside the risk-neutral
series; both are smoothed for readability. The figure illustrates a time-varying
premium for joint crash risk. During turbulent periods (e.g., the Global Financial
Crisis), the risk-neutral probability exceeds the physical estimate, consistent with
a positive compensation for bearing joint tail risk. In contrast, in calmer mar-
kets the ordering often reverses—the physical probability exceeds the risk-neutral
one—suggesting that currency exposures may provide a hedging benefit and earn
a negative tail-risk premium. Overall, the evidence points to currencies serving
as tail-risk hedges in normal times, but commanding compensation during stress
episodes.

This evidence is consistent with the structural explanation of Lustig et al.
(2014). They argue that, in times of stress when the marginal utility of wealth is
high, U.S. investors who are long foreign currencies are exposed to the risk that
the dollar appreciates. Consequently, the conditional expected return on such a
strategy should be high. In contrast, during normal times the strategy behaves
more like a hedge: investors bear the risk of a dollar depreciation following a
positive shock to the U.S. pricing kernel, so the conditional expected return is low

or even negative.

7 Conclusion

This paper introduces a new approach to estimating risk-neutral expectations from
option prices. The core idea is to project the target payoff function onto the space
spanned by observed option payoffs and the underlying asset. Like the method of
Carr and Madan (2001), the resulting estimate is a linear combination of option
prices and the underlying. However, the projection approach makes optimal use
of the available strike prices to minimize the approximation error. We show that
this method much better finite sample properties. Simulation results confirm this
advantage: the projection method delivers approximation errors that are orders

of magnitude smaller.
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L @ (3)

Constant () 0.042 0.032  0.031
(0.0171) ~ (0.0182)  (0.0178)
Independent 1.350 —1.380
(0.8585) (1.8274)
Dependent 0.652  1.176
(0.3497)  (0.7555)
R*(%) 0.94 1.33 1.45
R%,5(%) 2.70 3.75

p-value (const= 0, slope=1) 0.00 0.16

Table 1: OLS estimates of (14). Each column reports a different forecasting
model. Newey—West standard errors (20 trading-day lag) are shown beneath the
coefficients. The bottom row reports the p-value of the Wald test on the joint
restriction [fy, 81] = [0, 1].

We extend the projection approach to higher dimensions and, using approximation-
theoretic tools (ridge functions), derive necessary and sufficient conditions under
which simple options complete multiple asset markets. Although these condi-
tions are rarely satisfied exactly in practice, we show that projection still es-
timates joint risk-neutral expectations robustly—most notably for risk-neutral
covariances/correlations in the FX setting. Thus, projection provides a unified
framework for estimating risk-neutral quantities not only for a single asset but
also in the multi-asset case.

The empirical application, FX, provides a clean setting for multivariate esti-
mation. In simulations, the projection estimator recovers the true correlation with
near-zero error. In the data, we estimate the conditional 1-month risk-neutral cor-
relation between EUR/USD and GBP/USD returns, which averages around 0.7.
Thanks to the high frequency and forward-looking nature of option quotes, we
detect a notable shift in this correlation at the end of 2012. We interpret this as
a genuine change in dependence: bearish U.K. news contrasted with more bullish
euro-area developments that temporarily weakened the co-movement between the
two USD majors.

Relatedly, we also estimate the joint risk-neutral crash probability and find that
it forecasts future realized crashes. Furthermore, when comparing the risk-neutral
crash probability to the physical probability inferred from an OLS regression, we
find that the risk-neutral probability is higher during crises but generally lower
outside these periods. We interpret this as data-driven evidence that U.S. investors
in portfolios of foreign currencies demand crash compensation in bad times, but

value these positions as a hedge in normal market conditions.
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A  Proofs

A.1 Proof of Proposition 1

Proof. The normal equations yield X’Xﬁns = X'Y. The (i, j)-element of X'X
and the ith element of XY are given by

(X'X) =3 di(s)ds(s2), (XYY =3 buls)a(se).

Assuming that the grid is equally spaced with length m(n,) = (@max — Amin)/"Ns,

it follows by the Riemann sum approximation that as n, — 0o
m(ns)(X'X)y; — / ¢i(St)¢;(Sr)dSr,  m(ns)(X'Y); — / ¢i(St)g(ST) dST.
A A

The proof continues to hold if the grid in not equally spaced but the mesh goes
to zero. The associated Gram matrix is invertible because the basis functions are
linearly independent in L?(A), so the solution to the normal equations exists and
is unique if n; is sufficiently large.

The proof that § also solves the minimization problem follows immediately

from the first order conditions

([ stsmotseyass) 5= [ atsmotseass

where ¢(S1) = [61(Sr). -, Gan, (S1)]' =
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A.2 Proof of Proposition 2

The following proof is well known (see Lebesgue (1898)), but we include it for
completeness and because the assumption on the strikes results in some slight
modifications of the original proof. The proof below is presented for call options,

but applies verbatim to put options as well.

Proof. Let g € C(A). Because g is continuous on a compact set it is uniformly
continuous: for every € > 0 there exists a 6 > 0 (independent of z), such that
SUD|,—y < [9(2) — g(y)| < &. Let amin = 21 < 13 < -+ < T = Amax be a partition
of A such that z;41 — x; < 0 Vj, where Gupin = min(A) and ama.x = max(A).
On each interval [z;, ;41| construct a linear function g;(x) = a;x + b; such that

gj(x;) = g(x;) and g;(xj11) = g(xj41). For every z. € (z;,x;41) it follows that

9(ze) = gi(ze)| < lg(xe) — g(2))] + |g(z;) — G;(2e)| < 2,

because
Te — Ty

l9(;) = gj(xe)| = |9(2j41) — g(;)] -

Lj+1 = X
Since . is arbitrary, it follows that sup,c(,, ,..,19(2) — g;(z)| < 2e. Now, define

the polygonal function
n—2
§(x) = 3;(2)1 (x € [1j,2551)) + o1 (@)1 (2 € [0, 7)) . (15)
j=1

From the construction above it follows that § is continuous and sup,c 4 |g(z) —
g(x)| < 2e. We claim that the polygonal function constructed in this way can be

written as

9(x) = b1 + nz_:lﬁjﬂ (& — ;)" (16)
j=1
To see this, proceed inductively. On [z, 2], (15) can be written as
g(x)=ax+b =a (z— x1)+ + 51,
where b; = by + a;z1. On [x1, 23], we can write
G(x) = ay (x — 1) " 4 by + ay (v — 22) " + by,

where

CL1+C~L2:CL2 and b2:b2+a1x1,
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which can be solved for to obtain dy, by. Continuing inductively, we obtain (16).
It remains to show that g can be uniformly approximated by a function of the

form
ng—1

Gu(@) =B+ D Bjwa (= K;)F,
j=1

where K; is among the observed call option strike prices. But this can be achieved
if ny, is large enough. Specifically, let ny, be large enough such that max;—;, _,—1|z; — K;| <
e. By assumption such nj can always be found since {K ]}?i , is dense in A as

ny — 0o. Considering that

ilelg |(z — )" — (z — Kj)+| <e,

it follows by another application of the triangle inequality that

sup |g(x) — gn, (z)| < 3e.
z€A

A.3 Proof of Corollary 1

Proof. According to Billingsley (1999, Theorem 1.2), a probability measure P
on a metric space is completely determined by the expected values Ef(X), for
all bounded, uniformly continuous functions f, where X ~ P. Proposition 2
shows there is a sequence of functions f,, € span(Faiy,) converging uniformly to
f. Because A is compact and f, f,,, are continuous (hence bounded), the domi-
nated convergence theorem shows that Ef(X) is pinned down uniquely for every

bounded, uniformly continuous f. O

A.4 Proof of Proposition 3

Proof. Without loss of generality, we assume that all strike prices correspond
to call options. We start by deriving an error bound on the piecewise linear

polynomial, denoted by g, that interpolates the points

{(a’mim g<amin))7 (Kj7 g<KJ>>;Lil7 (amaxa g(amaX))} .
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Letting g; denote the interpolating polynomial on [Kj, K;11], it follows from stan-
dard results in approximation theory (e.g., Embree (2010, Lecture 11)) that

o o)~ (ol < (e ) (0o )00 - )

r€[K;, K1) ¢k, K] 2 T€[K;,K;j11]

1
<9l o 3 (Kj1 — K;)?, (17)

where [/l = MAXecfunuemn [97(€)]. Hence,
Kt - 2 e 5
. (9(z) — gj(x))"da < ol 19115 (K1 — K;)”
Since g equals g;(x) on [K;, K1), it follows that
Ky, ) el K )
[ e - @yar =3 [ (gl) - ) do

K1 ]:1

n m2 5
< — A
<2 g2,

= O(1/n), (18)

where in the last line we used that A = O(1/ng). Applying (17) again on

(K, , Gmax] Tenders the estimate

max |g(z) — g(z)] < [lg'l| é (amax — Kny)” (19)

xre [Knk 7amax}

A similar bound can be derived on [ayn, K;]. From the proof of Proposition 2 we

know that g(z) can be written in the form

g(x) = P+ Pox + Zﬂﬂj (z— K;)".
j=1
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Then we can bound the estimation error as follows

B2 [9(S2)1 (Sr € A)] - B2 [3(51)1 (Sr € )

Gmax

(9(x) = §(x)) [0 () do

< [ lgt@) - 4@ 12 gl do
ammam am 1/2
< ( — (= 2dx) ( flo(a >2dx)
a?f;lx GZLX 1/2
< ( — (= Qd:c) ( flo(e >2dx)
aff;x o
([t ) ( [ 6@ - s
;Z:" iﬁfx 12
3 ACCEE OIS R VEEE

"k

Amax 1/2
=: </ f2. () dx) (Bi + By + B3)'?,

where we successively used the Cauchy-Schwarz inequality combined with the
square-integrability of fth, and the minimization property of §g. From (18), we
know that By = O(A*) = O(1/n}). Moreover, by (19) and the assumption that
tmax — Kp, = O(1/n2"%), By is of order O(amax — Kn,)® = O(1/n). Analogous
reasoning yields By = O(K; — amin)® = O(1/n}).

0

A.5 Proof of Proposition 4

Proof. Over A, the CM Taylor expansion in (1) is given by

9(x) = 9(Fror) + 9 (Fior) (v — Fior)

+ / R (K — 2)t A + / " K)o — K)AE.

min Knk

We will focus on the case x < Fy .1 (the case x > F,_,r is identical). The integral

is discretized using the trapezoidal rule, which is known to satisfy
Ft—>T

> AK;¢'(K)) (K — Sr)" = / g"(K) (K —2)"dK + 0 <i> )

J:K;<Fi 7 K
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uniformly in z. Hence, for x € [K;, F;_,7|, we obtain

s lo(o) — gen(o)] =0 ().

xe[Klet—)T]

For x € [amin, K1], we get

9(x) = gom(z)] =

[ s - ax]
< 19"l 5 (K — )

Analogous reasoning yields a similar bound for x > F, ,7. The same reasoning at

the end of Proposition 3 then finally gives

/ " 9(@) = Gom(@)) £O,0 () da

Gmin

< ( / f&T@)?dx) " ( / " (g(2) — e (@) d

+ /Knk (9(z) — gom(x))* dz + 7 (0(2) — do(@))’ dx) 1/2

K1 K

Gmax

"k

1 1/2
= (O (Kl - amin)s + O <F> + O (amax - Knk)5)
k

:o<ni>

A.6 Proof of Proposition 5

Proof. Let PL denote the space of continuous piecewise linear functions on this

knot sequence. It is standard that (e.g. using the proof of Proposition 2)
PL = span(F2+nk) =span{l,z, (v — K1)4+,...,(x — K, )+}.
Equivalently, PL is spanned by the nodal tent functions {p;}7*{" defined by

%’(KJ’) = 5z’j> supp(gol-) = [Ki—17Ki+l]7
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(where @q, ©n, +1 are the boundary hats). In particular, any s € PL can be written

uniquely as
s(x) = Z a;pi(z), a; = s(K;).

Let g € C*(A) and let § be its L?(A)-projection onto PL. Write §(z) =
Z?ﬁg ! a;p;(r) and define

b; ::/Agoi(:c)g(x) dz, M;; ::/Acpi(x)goj(a:) dz.

Then the normal equations are M« = b. For interior indices i = 1,...,n; (away

from the boundary), the matrix entries on a uniform grid are
h el
Mi,i:ﬁ:lzga MUZO if |Z—j| > 1,

so the interior normal equations read (see also de Boor (2001, p.34))

h 2h h )
5 i1 + 5 + g+ = b;, 1=1,...,n. (20)

Define y; := b;/h and the discrete operator T by

1 2 1
(Ta); = g1 + 3% + g it

Then (20) is equivalently

Step 1 (expansion of y;). For interior 4, the hat function satisfies ¢;(K; + u) =
1 —|ul|/h for u € [—h, h], hence

b, = /}f_m g(x)pi(x)de = /_};g(Ki + u)( — |—Z|> du.

Expanding g(K; + u) around v = 0 and using symmetry (odd moments vanish),

we obtain

b; h? .
R =Y; :g(Ki)+Eg//(Ki)+O(h4)a t=1,...,ng,

where the O(h*) term is uniform in .

47



Step 2 (candidate solution). Define the candidate sequence

2
h//

&; = g(Ky) = 159" (Ki). (22)

A Taylor expansion yields, for interior 7,
h2
(ﬂm:@+gymw+mm)
Since " (K) = ¢"(K) — 2 g™ (K), this implies
2

Combining with Step 1 gives the residual
ri = (Ta&); — yi = O(hY), t=1,...,n.

The operator 7 corresponds to a tridiagonal Toeplitz matrix on interior indices,
and is strictly diagonally dominant. Hence 7T is uniformly invertible on interior
indices and ||7!|| < C for a constant C' independent of h. Therefore, solving (21)

and using Ta = v,
a—a=T ' y—-Ta)=-T"r

so a; — &; = O(h*) for interior 7. In particular,

2

Q; ZQ(K‘)

Z_Eymw+mmx i=1,...,n. (23)

Step 3 (translate to option basis). Write the same projected spline in the
option payoff basis,

ng
§(x) =P+ oz + Y Ai(w — K;)".
=1

For z # K, differentiating gives

(@) =5+ Z Vi

JiKji<z
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hence #; is the jump in slope at K;. Let

Qi1 — Q4

. (the slope of § on [K;, Kit1]).

pi =

Then the jump in slope at Kj; is

Qi1 — 205 + iy

h

~

Vi = Pi —Pi-1 =

A Taylor expansion yields a; 1 — 20, + a;_1 = h*a"(K;) + O(h?), hence
Fi = ha"(K;) + O(K?).
Using (23), we have o' (K;) = ¢"(K;) + O(h?), and therefore

Yi=hg"(Ki) +O(h°),  i=2,...,m—1,

i.e. for interior strikes the leading-order term of the projection coefficient in the

truncated power basis is h ¢"(K;).

The slower convergence rate at the boundary coefficient 4; follows because the

kernel function ¢ is one sided, so odd moments under the kernel function no

longer vanish. The same observation applies to 4, .

A.7 Proof of Proposition 6

Proof. The space spanned by Fsi,, is equal to the span of the B-spline basis

functions of order 2 with knots at ap;, < K; < -+ < K,,, < aGmax. In particular,
this implies that the L?*(A)-projections concur. de Boor (2001, Theorem 12 in

Chapter 2) then shows that

max |g(x) — §(2)| < Adist(g, Forn,).
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Consequently,

B29(5r) ~ EZ4(50)] < [ lota) = (o)) £2,1(a) da
= [ lote) = @) @) e+ [ o) = (@) S o) do
[l - 40 f2rl) o

< E? [(|g(S)| +19(Sr)) 1 (Sr ¢ A)] + 4dist(g, Fayn,)
< e+ 4dist(g, Forn,)-

Notice that EXS; < oo implies that EZ |§(S7)| < oo, since § is a piecewise linear

function of S, and therefore has at most linear growth. n

A.8 Proof of Proposition 7

Proof. Part (i) follows immediately from the continuous-state problem (8), as
1(S7 < amin) =0 and 1 (S7 < amax) = 1. Since the approximating function class
contains the constant function, it follows that the solution to (8) in both cases is
B =0and [B1, B2, Poin,] = [1,0,...,0] respectively.

Part (ii): We need to establish differentiability of 3(z). The risk-neutral distri-
bution can easily be derived from (7) and (10). In particular, from (7) we deduce
that

(61, 01) .o (D1, 024n) | .
Shw=| - : :
ox : ' ' ,
<¢2+nk7 ¢1> s <¢2+nk7 ¢2+7’Lk> ¢J (x)
_¢2+nk (l‘)_

Each component of %B(w) is therefore a piecewise linear function due to the
structure of the basis functions. The final claim then follows because a linear
combination of piecewise linear functions is piecewise linear.

Part (iii): By the Gram-Schmidt process, we can assume that {¢Z}2+n’“ is
an orthonormal basis w.r.t. the inner product (¢;,¢;) = [ 4 0i(z)¢j(w) dz. This

integral is finite because all basis functions are continuous and A is compact.
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Hence, for x € A the risk-neutral CDF and PDF can be expressed as

24ny
FR ()= (1(Sr <), 6;(Sr) EP;(Sr)
j=1
. 2+4ng
fa(@) = - FR (e Z 63 (x)EP;(Sr)- (24)

Notice that Ethsz(ST) is now a linear combination of put and call option prices
due to the Gram-Schmidt process. It follows from (24) that

0 2+ny,
/A (2)dF2 1 (a ZE 165(50)] / 9(2);(x) da

2+7’Lk

= Z EtQ [qu(ST)] <g,¢j>
=E?4(Sr).

The last line follows because, under the Gram-Schmidt process, Bj from (7) equals
(g, ¢;) since (¢, ¢;) = 0;; by orthonormality. O

A.9 Proof of Proposition 8

Proof. To simplify notation in the proof, we let = denote stock 1 (Syr) and y
denotes stock 2 (Sy 7). Similarly, the support of both stock will be denoted by
the intervals [z1, x,] and [y, y,|. By a straightforward extension of Equation (8),

g solves the approximation problem

/ / (e — 3z, y)? dy da. (25)

We first solve a simpler problem where the function zy is projected on

g(z,y) = Bo + Bllﬂ' + Bz!/-
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The first order conditions for the (simplified) approximation problem (25) imply

Tn Yn “ “ “
/ / 2y — fo— bz — Bay dyde = 0 (26a)
, o A A A
/ / x (wy — By — Prx — &y) dydx =0 (26b)
Il'lxn ylyn A A A
[ [ v (er o o = o) dyde =0, (260)
1 Y1

Now define the constants

1 En
T = / IdZE:(.Tn‘i‘Il)/Q:EtQSLT
Tp — X1
1 In Q
Y= / ydy = (yn +y1)/2 = EZSor
yn - yl Y1
1 1 Lo fYn
Ty = / / ry dy dx
xn_xl yn_yl 1 Y1

The fact that x and gy are equal to the risk-neutral expectations of the first and

second stock follows from the assumption. The first constraint in (26) forces
Bo =z — 17 — Boyj.
The second and third constraints can thus be expressed as
/ / g xy—ﬂfy Bz —7) - Ba(y—@?)] dydz =0
1
/ /y (y—9) xy—fﬂ—ﬁl(:v—f)—ﬁz(y—?)] dydz = 0.
z1 Jy
From here, we readily obtain the solution

. f " (2 — z)(zy — 79) dy dw

— g 27
ﬁl f$1 yyln (,T,' - .',C)2 dy de Yy ( a)
- L Ly = 9) ey — 3y) dyde
ﬁg = T Un 2 =X (27b)
Lo Sy —9)? dyda
By = —17 (27¢)

Finally we verify that adding a put or call option basis function yields a coefficient

of zero. To see this, without loss of generality, we focus on a basis function of the
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form (z — K)*. Using the first order conditions, it is sufficient to show that
Tn Yn " N “ “
/ / (z — K) <$y—ﬁo—51$—ﬁzy>dyd$:0,
T Y1

where (o, 51 and 3, are given by (27a) — (27¢). Notice that xy — By — Bt — foy =

(x —x)(y — ). So the integral can be written as

/mn(x—K)Jr(x—i)dx/yny—gdyzo.

z1 Y1

]

A.10 Sufficient conditions for ridge representation and the

proof of Proposition 9

For completeness, we state the result of Lin and Pinkus (1993), giving necessary
and sufficient conditions for ridge representation to hold. To state the result, some
additional terminology is necessary. A polynomial p(xy,...,z4) can be associated
to the differential operator p(a%l, e a%d). Let P(a',...,a") be the set of poly-

nomials which vanish on all lines {\a’, A € R}. Let @Q be the set of polynomials
q(z1,...,14) such that p(z2-,..., -2 )g =0 for all p € P(a',...,a").

oz’ ? Oxg

Proposition 10 (Lin and Pinkus (1993)). Let a',...,a" be pairwise linearly in-

dependent vectors in RY. A function g € C(R?) can be expressed in the form
g(z) => gi(a" )
i=1

if and only if g belongs to the closure of the linear span of Q.

In many practical situations, a more elementary argument suffices to show that
a function cannot be written as a ridge combination with given directions a’. For
example, in the case d = 3, the following reasoning shows that g(z) = z1(w'z)

cannot be expressed as

9(x) = g1(z1) + g2(w2) + g3(x3) + ga(w'z).

Suppose, by contradiction, that such a representation exists. Then, by differ-

o . . 0%g 9% gi
en‘glatmg twice, we have 23003 S T
0294

Bosins = wowsgy (w'x). This implies that g, must be affine, but this cannot possi-

= 0. However for ¢+ = 1,...,3, while
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bly hold since g(z) contains the cross terms x;x9 and z123. This proves Proposition
9 in case d = 3. Notice that we tacitly assume the most favorable scenario where
options complete the market for each asset (e.g. using the same assumptions as
in Proposition 2), so that each g; can be estimated with arbitrary accuracy.

The argument generalizes directly to d > 3, thus showing that in higher di-
mensions it is not possible to perfectly estimate the risk-neutral covariance or

correlation of sector ¢ with the market portfolio.

A.11 Proof of Proposition 11

Proof. Let B denote the projection coefficients obtained from the quadratic pro-

jection. We need to show that

d
/ (a:ixj — BO — Zﬁrxi — BMCE?w) zpdr =0,
A r=1

for odd n € N, and k € {1,...,d, M}. Because each z}' and 2}, are symmetric
around Ry, ,p, it follows that Bo fA zpde =0for k={1,...,d, M}.
Next suppose that k € {1,...,d}. Then

/ xiz;xy de = 0. (28)
A

This holds because the integral factors and it always contains an odd moment

which vanishes. Using the same reasoning, it follows that

d
/ Z Bratxl dz = 0.
A r=1

Now we handle the excess market return. Note that because Zle w, = 1, it
follows that

d

2 2.2

Th= Y w42 Y wwT T,
r=1

1<ji<jz2<d

Then, using identical reasoning as before we get

/ z3apdr = 0.
A

Suppose now that k = M (the market return). Ordering the indices iy, ..., 1, as

J1 < -+ < Jm for some 1 < m < n with each 7, occurring with multiplicity a,, we
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then obtain that for n € N

d n
J— al .al a a
( E wizcl-> = E Croan, . am Wy, TG - W TG (29)
i=1

1<ji1<<jm<d

where 1 <m <n, ay,...,a, are positive integers adding up to n, and ¢, 4, is

yee G

the multinomial coefficient

n!

Cn,ay,...am — .
breftme gyl ag,!

From the identity (29), it follows that for odd n > 3

/ rix;xy de =0,
A

The identity holds by splitting cases. The only way for the integral to be non-zero
is if the summand in (29) contains even powers of x; and z;. But if that is the
case, then there must be at least one odd power of x;, for some k # ¢, 7. As shown
at the beginning of the proof, the integral of an odd power of x; is zero.

Similar reasoning shows that

/ wieh, dr =0, (30)
A

because the only reason the integral cannot vanish is when (29) contains even
powers of z;. But then by implication there must be at least one odd moment of
x), in the product, whose integral vanishes. Because the overall integral factors as
a product we conclude (30).

Finally, the fact that [, 23,2% dz = 0 follows again because z3* is an odd
function.

]

A.12 Proof of Proposition 12

Proof. We start from the identity

d

2 _ 2.2

Ty = g wiTy, + 2 E WiW; T3 T 5.
k=1

1<i<j<d
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Because F contains the quadratic monomials, and because the projection operator

1 7 is linear and idempotent, it follows that

d

2 2,2 T

Ty = E Wiy, + 2 E wyw; I zlx;z;].
k=1

1<i<j<d

Taking risk-neutral expectations on both sides then completes the proof. O

B Projection and equicorrelation

Given that vanilla options on the individual sectors and the market portfolio do
not, in general, identify the full matrix of pairwise correlations, one must introduce
additional structure. A common approach is to impose equicorrelation. We show
that this equicorrelation estimator can be interpreted as a replicating portfolio, and
then use projection to generalize it: the projection step chooses portfolio weights
that are optimal (in an L? sense) for estimating heterogeneous covariances and
correlations. In this section we assume that no dividends are paid, although it is
straightforward to incorporate them at the cost of slightly heavier notation.'
The equicorrelation estimator of Engle and Kelly (2012) assumes that the
correlation between any two assets is the same. In that case, the correlation

estimate can be written as

~

5 Var? (Risr) — 25:1 wjz',tvar? (Rjr)
t pu—

2 Zl§i<j§d W; Wy ¢ \/Var?(Ri7t_>T)Var?(Rj,t_>T)

This formula is also used by the CBOE to construct its implied correlation index.
It is useful to reinterpret this as a portfolio replication problem. The target payoff
is
(Ri,tHT - Rf,t%T)(Rj,t—)T - Rf,t%T)
\/VartQ(Rivt_,T)Var?(Rji_g)

and the basis functions are the quadratic payoffs

Y

(Rt—>T - Rf,t—>T)2 and (Rj,t—>T - Rf,t—>T)2 , forj=1,...,d

Viewed this way, the replicating portfolio is the same for all ¢ # j, with weights

proportional to a weighted average of sector-specific standard deviations.

15Under this assumption, EtQRZ-,tHT = Ryir. If we include dividends, then E?RZ-’,HT =
Fiio1/Se.
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The projection approach allows us to optimize and generalize these features.
For shorthand, let z, := Ry¢sr — Ryyr and xp == Ryyr — Ryy7 denote the
excess returns on asset k and on the market, respectively. Let = = [z1,...,x4],
so that z,; = w - x, where w is the vector of market weights. To generalize the
equicorrelation estimator, we seek the optimal replicating portfolio for z;z;, which
directly targets the risk-neutral covariance between returns i and j5.°

First, consider the continuous-state analogue. Let A = A; x --- x Ay C R? be

compact. We seek univariate functions gy, ..., gq, gir € C(R) that minimize
d 2
[ (= Y ) = guatan))
A k=1

where z3; = w'x. Rather than solving this infinite-dimensional problem directly,
we approximate it by restricting attention to low-degree polynomial payoffs. This
is motivated by two considerations: (i) polynomials are dense in C'(A) (Stone—
Weierstrass); and (ii) higher-order risk-neutral moments are empirically difficult
to estimate. The following result implies that we can restrict attention to quadratic

and quartic terms, because the coefficients on odd moments are zero.

Proposition 11 (Odd-moment orthogonality). Fizi # j. Let F = {1,23,... 2% 23,},
and let ﬁ;[xi:cj] be the L*-projection onto F under the inner product (f,g) =
[ f(@)g(x) dz, where A= Ay x ... Ag, and A; = [al s, @l s symmetric around

0. Define the residual function by -
€ij = T;x; — ﬁ;[mzxj]
Then for every odd integer n > 1,
(€ijoxp) =0 forallke{l,...,d M}.

Remark 6. In practice, the interval for each excess return will typically not have
0 as midpoint, because options data are skewed and there tends to be more infor-
mation going further in the left-tail. Nevertheless, the midpoint of each interval
will be close to 0, and we find in simulation that the projection coefficients of odd

moments still tend to be negligible in that case.

In contrast to odd-moments, the projection coefficients of even degree will

generally not vanish, and including these monomials will generally decrease the

6Working with covariance instead of correlation involves no loss of generality, since the
equicorrelation estimator maps directly to a replicating portfolio for x;x;.
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approximation error. Compared to the equicorrelation estimator, we thus gain
generality in that we incorporate not only variance but also the 4th moment (a
measure of tail-thickness), and the portfolio weights are allowed to differ for each
pair of assets, thus allowing to estimate the correlation between an arbitrary pair
of assets, instead of assuming all correlations are the same.

Projecting x;x; on the subspace
.F:{]_,ZE%,...,IL‘Z,I’%,...,I’?Z,ZE?V[,ZE%} (31)

also circumvents the computational burden of projecting x;x; directly onto the
full set of option payoffs. The latter would require minimizing an objective that
depends on an 11-dimensional integral and a large number of parameters. A
discretized OLS approach is likewise infeasible: with 1000 grid points per return,
the state grid would contain 1000*! rows.

Instead, we first project x;x; onto F and then project each resulting power
payoff onto the corresponding univariate option basis. This two-step procedure
yields the same result as projecting directly onto the smallest subspace, because for
orthogonal projections onto nested subspaces one has I1p g = Il Il5 g whenever
F C G (with respect to the same inner product).

Moreover, the projection of x;x; onto F can be derived in closed form, and
the subsequent projection of a monomial such as z? onto option payoffs that
depend only on asset k is a one-dimensional problem, which can be solved using
the method in Section 2.3. Based on the projection coefficient on the subspace in

(31), we define an estimator of the covariance by

d
_—Q ~ R R .
Cov,;, = EPTe[zi,] = Bosj + Z [5k,z‘jvar?(3k7t—>T) + i B (Rpyor — Rf,t—>T>4]
k=1
+ 5M,z‘jVaI‘?RHT + ’AYM,ijEtQ (R — Rf,HT)4 : (32)

Because we can identify the risk-neutral variance, for consistency, it is desirable

that the covariance estimator satisfies
d Q
Var?Rt_)T = Z wZ-QVar?RM_m +2 Z w;w;Cov,; ;. (33)
i=1 1<i<j<d

The next proposition shows that the addition formula holds whenever the

projection space contains all univariate quadratic terms.

Proposition 12. Let F be a function space such that {z3,... 23,23} C F.
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Define the covariance estimator based on F by
Covij,t = Et H].‘[Z'Zl'j]
Then, (33) holds.

Remark 7. Motivated by the empirical setting, the results above extend to the
case with multiple index portfolios. Suppose there are two index returns x;; =
wy - x and xpr2 = ws -  with corresponding options. Then Proposition 11 holds
verbatim for each index. Likewise, Proposition 12 holds simultaneously provided
the projection space contains all univariate quadratic terms, including m?\m and
77 5; under this condition, (33) holds for each weight vector w, (¢ = 1,2), with

the variance on the left-hand side taken for the corresponding portfolio.

B.1 Simulation evidence for sector ETFs

We now evaluate the efficacy of the covariance estimator in (32) for the eleven
sector ETF's using a simple factor structure under the risk-neutral measure. Let
X € R denote log-returns and R = exp(X) the corresponding gross returns. We

simulate
X =Bf+e, f~ N(O, diag(aif, agj)), €~ N(O, diag(o?, . .. ,0%1)), f Le,
with B € R'**2, Hence

Var?(X) = B diag(c?,02) B + diag(c?,...,0%,).

The factor structure captures systematic risk and cross-sectional correlation.
We set the gross-return means to one and winsorize R at [0.4, 1.5] componentwise.
Entries of B are drawn 11D from Unif[—0.4, 1].

We run 1,000 Monte Carlo simulations. In each run we compute the mean
squared error (MSE) between the vector of true pairwise correlations and the
estimated correlations. As a benchmark, we include the equicorrelation estimator.
Table 2 reports summary statistics: the projection-based estimator attains lower
MSE across the distribution. We also report the correlation between the true
correlation vector and the projection-based estimate within each run; the average
is about 20%, indicating that the projection approach captures meaningful cross-
sectional heterogeneity. By construction, the equicorrelation estimator does not

capture such heterogeneity, as it imposes a common correlation across all pairs.
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Min Median Max Mean Std. dev.

Equicorrelation 0.0231 0.1361 0.3860 0.1436  0.0472
Projection correlation 0.0253 0.1259 0.3312 0.1284  0.0408

Table 2: Summary statistics of MSE. This table summarizes, across 1,000
Monte Carlo simulations, the distribution of the MSE for the equicorrelation es-
timator and the projection-based correlation estimator in (32).

C Empirical estimates of SVIX and VIX

According to the simulation results, the projection approach compares favorably
to the CM formula especially when the number of observed option prices is small.
When the number of observed options is large it is a priori not so clear whether
a more refined approximation yields economically different results. To investigate
the benefits of the projection approach in the latter case, we estimate the SVIX
and VIX from Examples 1-2 using both methods. The calculation of both indexes
requires options on the S&P500, which is one of the most liquid option markets
worldwide. The SVIX and VIX thus stand a natural test case.

The options data on the SP500 are coming from OptionMetrics and span the
period January 4, 1996 until July 20, 2023. Several data cleaning procedures
are applied before each volatility index is calculated. The procedure is almost
identical to CBOE’s method when it calculates the VIX. A detailed description of
our procedure is included in Appendix D.

First, consider the SVIX defined by

1 Ry 7
SVIXZ,; = ——Vary [ ) . 34
t—T T —t art (Rﬁt_}T ( )
Martin (2017) derives conditions under which the conditional equity premium
satisfies .
ﬂ (EthHT - Rf,t%T) > Rf,taTSVIX?_)T-

In fact, when running the regression

1
T——t (Eth_yT - Rﬁt—}T) = BO + ﬁlRf,t%TSVIX?—)T +e€r, (35)

Martin (2017, 2025) cannot reject the null hypothesis that 3 = 0 and §; = 1, thus
suggesting that the lower bound is tight. This conclusion is particularly interesting

as it gives a model-free way to measure the equity premium in real time. Given
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its importance, we reassess this claim by using our projection method to measure
SVIX? ... Table 3 shows the results. For each prediction horizon, the difference
between the CM and projection method are very small, suggesting that in very

liquid option markets it is immaterial which method is used.

30 days 90 days 180 days

Projection ~CM  Projection @~ CM  Projection CM
Bo 0.002 0.005 —0.002  —0.005 —0.046  —0.052
(0.0407) (0.0400) (0.0512) (0.0504) (0.0361) (0.0365)

51 1.434 1.493 1.395 1.589 2.455 2.865
(1.0160) (1.0816) (1.2693) (1.3602) (0.7914) (0.8371)

R* (%) 1.12 1.08 2.09 2.35 6.91 7.94
# obs 6932 6932 6865 6865 6745 6745

Table 3: Equity premium regression. This table reports estimates from re-
gression (35) for return horizons of 30, 90, and 180 days. Newey—West standard
errors, using a bandwidth equal to the number of trading days in the horizon, are
reported in parentheses below the coefficients.

In addition to SVIX, we also estimate the VIX. Figure 6 plots the time series
of the difference between the two VIX estimates; the solid orange line is its 60-day
moving average, which remains positive throughout, consistent with the simula-
tion. The largest gaps occur early in the sample when option coverage is sparser.
We mark the 20 largest differences with blue dots, which can reach close to 8 per-
centage points. Such a gap is economically significant: portfolios with hundreds
of VIX futures contracts can experience multi-million-dollar P&L swings. The
single largest peak occurs on March 2, 2009, at the height of the global financial
crisis. On that day, the projection-implied VIX is 52%, while the CM approxi-
mation yields 44%. During periods of heightened uncertainty, risk-neutral mass
shifts to the left tail, which amplifies entropy because log(x) decays steeply near
zero (see (4)). In such episodes the CM method—linearized around the risk-free
rate——can be inaccurate, whereas the projection method remains reliable because
it approximates log(x) well over the entire domain. In line with this intuition, the
largest measurement differences cluster around the dot-com bust (2000), the global
financial crisis (2008), and COVID-19 (2020).

D Option data preprocessing

We use SP500 option data from OptionMetrics, covering the period January 4,
1996 to July 20, 2023. Following the CBOE procedure, we discard all in-the-money
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Figure 6: VIX estimate. This figure shows the projection VIX estimate mi-
nus the VIX estimate obtained by CM. The solid orange line denotes the 60-day
moving average of this difference. The blue dots indicate the 20 largest observed
differences.

put and call options, as well as any option with a bid price of zero. When there are
two consecutive strikes with a bid price equal to zero, all options with higher strikes
(for calls) or lower strikes (for puts) are discarded. For each remaining option, the
price is defined as the average of the bid and ask prices. In total, this filtering
yields 11.738 million option prices. The risk-free rate for each return horizon is

obtained from the zero-coupon yield curve dataset provided by OptionMetrics.

D.1 ETF options and conversion of American option price

Options on SPY, XLK, and SPXT are recorded as American in OptionMetrics.
To estimate the risk-neutral volatility, we first convert these quotes to European-
equivalent prices. For each option we compute the Black—Scholes price using the
forward price and implied volatility reported by OptionMetrics; this conversion
accounts for dividends via the forward.!”

After this conversion, our preprocessing for SPY is identical to Section D. For
XLK and SPXT, by contrast, in-the-money options are often liquid, so we retain
both in- and out-of-the-money quotes. Furthermore, we discard only options with

zero bid prices, rather than also truncating the strike range after two consecutively

17As in Martin (2017) and Kremens and Martin (2019), we assume dividends are known in
advance and paid at time T
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observed zero-bid options.

E Details on simulation

In the Monte-Carlo simulation, we use two different models to generate option
prices. In both cases the time to maturity is 1 year. The first model is the
standard Black and Scholes (1973) model with a risk-free rate of 5% and volatility
of 20%. The simulation of the stochastic volatility jump (SVCJ) model is based
on Eraker et al. (2003). In their setup, the log asset price follows

dlogS;\ u (1 0 3
( dv; ) B (Fa (0 — %)) R (pom V1- p%) e (5) W

where V,_ = limgyy Vs denotes the left limit, W, is a standard two-dimensional
Brownian motion, N; is a Poisson process with intensity A, and &Y,&Y are the
jump sizes in returns and volatility. These jump sizes are correlated and have
distributions & ~ exp(u,) and &Y[¢¥ ~ N (,uy+pJ§”,a§). For simulation, we
only need to calibrate the model under the risk-neutral measure. The risk-neutral

parameters are taken from Broadie et al. (2007) and are summarized in Table 4.

Parameter  Value

K 0.0570
0 0.0062
p —0.4838
o 0.0800
1y 0.2213
1ty —0.0539
s 0.0000
o, 0.0578

1.5120
r 0.0500

Table 4: SVCJ model calibration
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