
Market consistent valuation of deferred taxes

Tjeerd de Vries∗

July 15, 2020

Abstract

This paper develops a continuous time framework to value deferred taxes using
Black and Scholes (1973) type option pricing techniques. The valuation renders a mar-
ket consistent pricing procedure, meaning that the final price of tax deferrals depends
on parameters observed in the market. The framework is flexible enough to value de-
ferred taxes like loss carryforward, loss carryback or liabilities arising from temporary
differences. In addition, our approach unravels the influence of leverage on deferred
tax values and proposes an alternative to the Modigliani-Miller theorem. A simula-
tion study over multiple time horizons shows that carryforward value is negatively
influenced by leverage, whereas carryback and latent tax liability values increase. An
empirical application serves to illustrate the practical use of our model: the loss ab-
sorbing capacity of deferred taxes (LAC DT) for European insurers.

Keywords: Deferred tax valuation, Option pricing, Loss absorbing capacity of de-
ferred taxes

JEL Codes: G32 (Value of Firms), H32 (Fiscal Policies and Behavior of Firms), H25
(Business Taxes)

∗Department of Economics, University of California San Diego. Email: tjdevrie@ucsd.edu

mailto:tjdevrie@ucsd.edu


1 Introduction

In this paper we describe the market consistent valuation of deferred taxes. Deferred taxes

are balance sheet items of firms with a certain history of fiscal profits and losses. They

reflect the advantage or disadvantage of such firms to pay less or more taxes compared to a

hypothetical, similar firm without any history of fiscal profits and losses.

Deferred taxes are commonly valued according to accounting standards, which recognize

and value them using a single deterministic scenario. This, however, does not reflect the

contingent characteristics of deferred taxes that their payoff, i.e. the tax advantage or

disadvantage, is a non-linear function of the future fiscal profits and losses of the firm. In this

paper we construct a model to take account of this non-linear payoff using basic option pricing

techniques. Thereby, the model yields pricing formulas that depend on market observable

parameters, resulting in a market consistent valuation of deferred taxes.

The market consistent valuation of deferred taxes differs from extant accounting valuation

methods in the following ways:

• The market consistent valuation of deferred tax assets (DTA) and deferred tax liabilities

(DTL) is typically lower than those obtained with current accounting methods. This

is because a market consistent valuation reflects scenarios in which DTA’s/DTL’s do

not materialize, while a single deterministic scenario is more or less all or nothing.

• Profits in previous years and the possibility in a tax regime to carry back future losses to

previous years also results in a DTA under the market consistent valuation principles.

However, this does not result in a DTA under conventional accounting standards. The

reason for this comes from the deterministic scenario, which only considers a profit

situation in which the carry back potential is not being realized. On the contrary,

a market consistent valuation does attach value to the (tax) advantage in negative

scenarios.

• Accounting standards (partially) recognize DTA’s if a firm can prove future profitabil-
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ity using subjective assumptions. Market consistent valuation uses market data to

encompass all future scenarios and thereby solely relies on objective parameters ob-

served in the market.

The main novelty of this paper is to attach a market consistent valuation to deferred taxes

arising from loss carryforward, loss carryback and temporary differences in a continuous time

framework. Hereby, we find that market consistent valuation techniques yield significantly

different estimates in comparison with conventional accounting valuation methods. This is

because the market consistent approach takes all future profit and loss scenarios into account.

In a final step, our methodology is applied to investigate the loss absorbing capacity of

European insurers. The model in this paper supports how insurance companies can value

their deferred taxes according to the market consistent valuation principles of Solvency II.

On top of that, the model provides insights in the loss absorbing capacity of deferred taxes,

an element that lowers the Solvency II capital requirements. The market consistent valuation

model indicates the following regarding the loss absorbing capacity of deferred taxes:

• DTL’s indeed have loss absorbing capacity; when an insurer, or any other firm suffers

a loss, part of this loss is being compensated by a lower market valuation of the DTL

after the loss.

• DTA’s may have loss absorbing capacity if the company has sufficient potential, re-

sources and/or own funds to generate future profits; in that case the value of the total

DTA increases after a loss. However, if insufficient own funds are available, such a

firm would experience a decrease in its DTA. In these situations, a reduction of the

Solvency II capital requirements for European insurance companies does not reflect

the actual loss due to a decrease in their DTA.

We find that the loss absorbing capacity is, on average, less than extant estimates and

under some circumstances can even be negative, since so much potential is lost after a severe

(negative) shock. Not only is the market consistent valuation of deferred taxes important
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for insurers, but it is also relevant to mergers and acquisitions, when buyers have to value

a firm. The common accounting valuation of deferred taxes does not necessarily reflect the

market price of the tax advantage or disadvantage.

2 Literature Review

Current valuation methods of deferred taxes are generally based on GAAP (Generally Ac-

cepted Accounting Principles) or IAS12 (International Accounting Standard, Income Taxes).

Sansing (1998) remarks that these approaches tend to overestimate the true value of deferred

taxes appearing on financial statements, as they are future benefits but not discounted.

Moreover, the appropriate discount factor is an open question, since the materialization of

deferred taxes is not risk free. Sansing (1998) derives a discount factor for deferred tax

liabilities, however assuming an average tax liability, thereby ignoring the dynamics over

longer periods of time. Waegenaere et al. (2003) obtain closed form formulas for tax carry

forward, including additional parameters like the duration period. This framework leads to

the surprising conclusion that the market-to-book ratio of carry forward can exceed one,

depending on the skewness of the underlying income distribution. This suggests that dis-

counting deferred tax assets may not always be appropriate. But, Waegenaere et al. (2003)

use the stringent assumption that income is generated in perpetuity, which is rather unreal-

istic. Empirical studies of deferred taxes are conducted by Amir et al. (1997); Ayers (1998);

Givoly and Hayn (1992). Givoly and Hayn (1992) use a linear regression approach, where

abnormal returns are regressed on the reduction in deferred tax liabilities during a period of

tax reforms. Hereby, Givoly and Hayn (1992) find that investors discount the liability based

on likelihood and timing of the settlement. Amir et al. (1997) use a regression approach as

well, but splitting the deferred taxes into seven categories, which renders a more precise es-

timate of the influence of deferred taxes on equity. All regression coefficients of the deferred

tax assets are found to be greater than one, which contradicts the hypothesis that DTA’s
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ought to be discounted, as this would imply a regression coefficient between zero and one. A

similar approach and conclusion is reached by Ayers (1998). However, as Waegenaere et al.

(2003) point out, this only holds if the disparity between book and market value is solely

due to discounting.

3 Four different types of deferred taxes

We now turn attention to the four types of deferred tax that we analyze. In this section we

explain the key distinguishing characteristics of deferred tax coming from: loss carryforward,

loss carryback and temporary differences. Throughout this paper we make the following im-

portant assumption about corporate tax payments, which is needed to model the contingent

characteristics of DTA’s/DTL’s.

Assumption 3.1. Taxable profit is measured by the difference in asset value over two

consecutive periods. Taxable income consists of net profit if this is a positive quantity and

is zero otherwise.

3.1 DTA from carry forward

Carry forward is the allowance to carry forward losses to offset future taxable income. A

firm recognizes that losses can be seen as an asset, since part of the loss will result in lower

tax payments compared to a similar firm without any tax history. The extent to which a

company is able to settle the carry forward in the future determines the eventual value of

this type of DTA.

Consider a company with no fiscal history, so that it does not have any deferred taxes

on the balance sheet. Let At denote the asset value of a company at time t before taxes are

levied. At t = 1, a firm pays taxes only if A1 > A0 (by Assumption 3.1), in which case the

total asset value is reduced. Let τ denote the tax rate, then the asset value at t = 1 after

4



tax can be expressed as

Ã1 = A1 − τ(A1 − A0)
+. (3.2)

Here Ãt denotes the value of an asset after taxes in period t and (x)+ ≜ max(x, 0). The

second term in (3.2) has the same structure as the payoff of an at-the-money European call

option with strike A0.

Consider a firm with an identical balance sheet, but with the additional benefit of carry

forward as a deferred tax asset. Carry forward can be used to offset taxable income in case

net profit is positive. Let CFt be the loss carry forward available in year t. Then in period

t = 1 we have the following post-tax asset value

Ã1 = A1 − τ(A1 − A0 − CF1)
+. (3.3)

A firm with carry forward pays taxes from the moment A1 > A0 + CF1, which differs from

a firm without having this tax asset, as they pay taxes as soon as A1 > A0. The asset value

after tax (3.3) versus (3.2) is shown in Figure 1a. The difference between the two asset values

becomes relevant as soon as A1 > A0, corresponding to the moment that a firm without fiscal

history has to pay taxes. The point from which the two firms start paying taxes is depicted

by the vertical dashed lines. The yellow area in Figure 1a is what fundamentally determines

the DTA (or DTL) value, as this concerns all profit scenarios where the DTA can be realized.

3.2 DTA from carry back

Tax carry back is the possibility to receive a refund of corporate tax paid in the past, due to

current losses. The maximum amount that can be claimed as refund equals the current loss

times the tax rate, although it may be less when historical profits are insufficient to offset

the current loss. Carry back renders the firm with an immediate cash flow that (partly)

compensates current loss, but expires worthless when a company makes profit in period one.

5



0 50 100 150 200

Asset value before tax

0

20

40

60

80

100

120

140

160

180

A
s
s
e

t 
v
a

lu
e

 a
ft

e
r 

ta
x

Without fiscal history

With carry forward

(a)

0 50 100 150 200

Asset value before tax

0

20

40

60

80

100

120

140

160

A
s
s
e

t 
v
a

lu
e

 a
ft

e
r 

ta
x

Without fiscal history

With carry back

(b)

Figure 1: Panel (a) shows the post-tax asset value of a counterfactual firm with A0 = 100
and a firm with CF1 = 40. The yellow area denotes the tax benefit of the firm with a DTA.
Panel (b) shows the post-tax asset value of a counterfactual firm with A0 = 100 and a firm
with CB1 = 40.

This gives rise to the following asset value of a firm in period one

Ã1 = A1 + τCB1 − τ(A1 − A0 + CB1)
+, (3.4)

where CB1 denotes the loss carry back in year one. In general we write CBt to denote loss

carry back in year t. The asset value after tax (3.4) and (3.2) are shown in Figure 1b. The

value of the DTA manifests itself when the company incurs a loss, in which one observes a

positive difference between the two graphs, as depicted by the yellow area. This difference

vanishes as soon as A1 is bigger than or equal to A0, which corresponds to a factual profit.

In that situation, there is no loss that can be carried back anymore.

3.3 DTA from temporary differences

Temporary differences arise as a consequence of the difference between accounting and fiscal

valuation principles. Fiscal accounting is based on historical cost. Initially, assets are valued
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at their market price on the fiscal balance sheet. If increases in the market price are not

reflected on the fiscal balance sheet, the firm does not need to pay taxes on this profit now,

but only when it sells. In other cases, like for fixed income, the tax advantage materializes

over the lifetime of the fixed income asset. As a result, a company can make an accounting

profit/loss, which is not recognized yet under fiscal accounting principles. The following

example illustrates this.

Example 3.5. Consider a company without any fiscal history, so that the market consistent

and fiscal account are exactly the same as in the T-account below.

Market consistent Account

Stock 100 Equity 100

Fiscal Account

Stock 100 Equity 100

Next, assume that the company’s assets rise in value to 120 due to an increase of stock

investment, so that a profit of 20 is realized. However, this profit is not recognized on the

fiscal account, because stocks are valued on the basis of historical costs. The company now

faces a deferred tax liability (DTL), because it does not yet pay taxes, but is obliged to do so

in the future. Suppose that the tax rate τ = 25%, so that the amount of tax paid on profit

would be 5. This amount needs to be reserved on the market account, because it needs to

be paid in the future. The fiscal balance sheet remains unchanged. The new situation leads

to the following T-account.

Market consistent Account

Stock 120 Equity 115

DTL 5

Fiscal Account

Stock 100 Equity 100

Now, suppose a negative shock occurs, reducing total assets by 40%. As a result, total

assets fall to 72, which means that the earlier profit of 20 and DTL of 5 disappear. When

selling the assets, a loss of 28 would be realized. This loss can be carried forward to offset
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the next 28 (taxable) profit, creating a tax advantage of 28τ = 7. This amount is put on

the market consistent account as a deferred tax asset (DTA). The new situation leads to the

following T-accounts.

Market consistent Account

Stock 72

DTA 7

Equity 79

Fiscal Account

Stock 100 Equity 100

Because of deferred taxes, the loss is not 48 but 36. This is the loss absorbing capacity

of deferred taxes (LAC DT), since part of the loss can be transferred to the tax authority,

thereby mitigating the overall loss. However, the DTA can only be settled if future profits

are sufficient to claim the full amount from the tax authority.

Example 3.5 details that a deferred tax asset arising from temporary differences might

occur due to shocks in the asset value. In this case, the loss incurred now can offset future

taxable income. Hence, the post-tax asset value of a firm having a DTA from temporary

differences is equal to

Ã1 = A1 − τ(A1 − A0 − ATD1)
+, (3.6)

where ATD1 (asset from temporary differences) is the nominal DTA value. We observe that

the post-tax value of such a firm has the exact same structure as a firm having some carry

forward available (see Equation (3.3)). Hence, when considering a one year time horizon,

the analysis of DTA’s arising from temporary differences is equivalent to finding a market

consistent value of carry forward.

3.4 DTL from temporary differences

Here we consider scenarios in which a firm makes profit under applicable valuation principles,

which is not recognized under fiscal valuation principles. The firm knows it is obliged to pay

extra taxes in the future and reserves an appropriate amount on the balance sheet, as in

8



Example 3.5. In the one period case, the asset value after tax of a company having a DTL

arising from temporary differences can be expressed as

Ã1 = A1 − τ(A1 − A0 + LTD1)
+. (3.7)

The parameter LTD1 (liability from temporary differences) is the amount of taxable profit

recognized under market consistent accounting, but not under fiscal accounting standards

in period one. In general, we write LTDt for the (total) unrecognized fiscal profit in time

period t. The asset value (3.7) is always less than or equal to (3.2), because of deferred tax

liabilities.

4 Two-period model unlevered firms

In a multi-period framework, the payoff structure of post-tax asset values becomes signifi-

cantly more complicated, due to the presence of additional parameters. For example, the

post-tax asset value depends on the settlement term of carryforward, whether carry back is

allowed or not, settlement term of carryback etc.1 In general, one would expect that de-

ferred tax assets become more valuable over longer time periods, since the probability that

the entire DTA is settled increases. An important change is that taxes are settled every year,

which creates path dependency. In this section we present some formulas for the post-tax

asset value of firms in a two-period model, which serve to illustrate the dynamics of the asset

process over longer periods of time.

1The settlement term denotes the number of years that losses can be carried forward/back.
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4.1 Carry forward

At the end of year two, the following post-tax asset value holds for a firm without deferred

taxes and excluding carry back possibilities

Ã2 = A2 − τ(A2 − Ã1 − 1A1<A0(A0 − A1)︸ ︷︷ ︸
=CF2

)+. (4.1)

In this formula, Ã1 is given by (3.2) and the indicator function is included to account for

carry forward possibilities.2 In case a firm has carry forward (= CF1) which has a settlement

term of one year, the formula is similar, except that Ã1 is now given by (3.3) Allowing carry

back results in a linear combination of options multiplied by indicator functions to keep track

of carry forward and carry back situations.

Ã2 = A2 − 1A1<A0τ(A2 − A0)
+︸ ︷︷ ︸

I

− 1A0<A1<A0+CF1τ(A2 − A1)
+︸ ︷︷ ︸

II

+ 1A1>A0+CF1(τCB2 − τ(A2 − Ã1 + CB2)
+)︸ ︷︷ ︸

III

,

where Ã1 is given by (3.3). This formula follows from considering 3 separate cases.

(i) Term I: If A1 < A0, a loss is incurred, carry forward expires worthless and no taxes

are paid. However, the loss incurred in period one (A0 − A1) can be carried forward,

so that the strike of the call option in year two equals A1 + (A0 − A1) = A0 > A1.

(ii) Term II: This concerns a situation in which profit is made which is less than the total

carry forward, so that no taxes are paid and no carry forward nor carry back is taken

to period two.

(iii) Term III: If profit is greater than carry forward, the entire carry forward is used and

2Alternatively, we could rewrite the last term as 1A1<A0(A0 −A1) = (A0 −A1)
+ to highlight the nested

option like nature of the payoff. This would be more consistent with previous notation, but we refrain from
doing so for notational convenience.
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corporate tax is paid over the amount A1 −A0 − CF1. This amount can subsequently

be taken to period two, where it can be used as carry back (CB2). Hence, in the

two-period model, the payoff structure of the assets after tax already becomes quite

involved.

Generalizing the formulas above for time periods t ≥ 3 is certainly possible, but will not

be pursued here. Excluding carry back and assuming a two year settlement term of carry

forward still results in (4.1) for companies without deferred taxes, but a firm with carry

forward in period t = 0 gives rise to

Ã2 = A2 − τ(A2 − Ã1 − 1A1<A0+CF1(A0 + CF1 − A1))
+.

This formula holds, since, if at time t = 1 the asset value is less than A0+CF1, some part of

carry forward has not been used and can be carried over to period two. Also, Ã1 is given by

(3.3). The payoff after tax still has the structure of a call option, but the path dependency

complicates analytical tractability.

4.2 Carry back

When determining the value of carry back, we always assume that loss carry forward can be

created in subsequent years, as there is no country in the world that allows carry back but

no carry forward. The opposite situation is ubiquitous in many tax regimes (see also Table

2). We can express the asset value after tax of a firm with carry back in the two year model
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as

Ã2 = A2 − 1A1<A0−CB1

(
τ(A2 − Ã

(1)
1 − (A0 − CB1 − A1)︸ ︷︷ ︸

=CF2

)+
)

(4.2)

− 1A0−CB1≤A1≤A0

(
τ(A2 − Ã0)

+

)
+ 1A1>A0

(
τ (A1 − A0)︸ ︷︷ ︸

=CB2

−τ(A2 − Ã
(2)
1 + (A1 − A0)︸ ︷︷ ︸

=CB2

)+
)
.

where Ã
(1)
1 , Ã

(2)
2 are given by (3.4) and (3.2) respectively. The first line follows since A1 <

A0 − CB1, which means that the complete carry back can be settled and additional carry

forward in the amount of A0 − CB1 − A1 is taken to period two. The second line considers

A0 − CB1 ≤ A1 ≤ A0, which means that only part of the carry back is settled. Since carry

back is only one year valid, the remaining carry back expires worthless as it cannot be taken

to period two. The last line treats the condition A1 > A0, which means the firm made profit

and the entire carry back expires worthless. However, additional carry back in the amount

of A1−A0 can be taken to period two and can be used when incurring a loss in that period.

At last, we consider the situation in which carry back is two years valid. This yields the

after-tax asset value in period two

Ã2 = A2 − 1A1<A0−CB1

(
τ(A2 − Ã

(1)
1 − (A0 − CB1 − A1)︸ ︷︷ ︸

=CF2

)+
)

(4.3)

+ 1A1−CB1≤A1≤A0

(
τ (CB1 − (A0 − A1))︸ ︷︷ ︸

=CB2

−τ(A2 − A0 + (CB1 − (A0 − A1))︸ ︷︷ ︸
=CB2

)+
)

+ 1A1>A0

(
τ (A1 − A0 + CB1)︸ ︷︷ ︸

=CB2

−τ(A2 − Ã
(2)
1 + (A1 − A0 + CB1)︸ ︷︷ ︸

=CB2

)+
)
.

Again Ã
(1)
1 , Ã

(2)
2 are given by (3.4) and (3.2). The difference between (4.2) and (4.3) comes

from the last two lines. The first line in (4.3) considers a situation in which the entire

12



carry forward is used in year one and additional carry forward can be taken to year two.

This situation is identical to the one where carry back is one year valid. The second line

results from the situation in which part of carry back is used, but unlike (4.2), this time

the remaining carry back can be taken to year two. The total amount of carry back left for

period two equals CB1 − (A0 − A1). Finally, if a firm makes a profit in period one, then

CB1 cannot be used, but because it can be settled in two years, the amount can be taken

to period two. Tax is levied over the amount A1 − A0, and these tax payments can also be

taken to period two and used as carry back. This means that CB2 = CB1 + A1 − A0 and

explains the last line of (4.3).

4.3 DTL

As opposed to DTA’s arising from carry forward/back, there are no regulations on settlement

terms of DTL’s. A DTL is put on the balance sheet to reflect future tax expenses, but it

depends on the specific characteristic of the profit stream when those untaxed profits are

materialized. As there are no regulations to guide us here, we consider two different scenarios.

In a basic setup, we assume that no intermediate tax payments occur and the DTL is settled

at maturity. This gives the post-tax asset value

Ã2 = A2 − (A2 − A0 + LTD1)
+

In a more realistic setup, we assume that the DTL is reduced in period one whenever the

firm incurs a loss in that period. The reduction in (nominal) DTL value is equal to the corre-

sponding loss. If the loss in period one exceeds the entire DTL value, the DTL disappears in

its entirety and carry forward is created over the remaining loss. In case the company makes

a profit in period one = (A1 −A0), taxes are paid over that profit and the DTL remains the

same. The DTL value left is taken to period two, in which settlement is due. Considering
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each of these three scenarios yields the post-tax asset

Ã2 = A2 − 1A1<A0−LTD1(A2 − A1 − (A0 − LTD1 − A1)︸ ︷︷ ︸
=CF2

)+

− 1A0−LTD1≤A1≤A0(A2 − A1 + (LTD1 − A0 + A1)︸ ︷︷ ︸
=gain2

)+

− 1A1>A0(A2 − Ã1 + LTD1)
+,

where Ã1 is the post-tax asset value in period one, as given by (3.2).

5 Extension to include levered firms

So far, we ignored the capital structure of a firm. However, the way in which a firm is financed

has repercussions for tax payments. Our approach to give a market consistent valuation of

deferred taxes depends on comparing tax payments of a counterfactual firm without fiscal

history and a firm having the same characteristics with deferred taxes. Introducing debt

financing alters tax payments, since coupon payments can be deducted from taxable income,

creating the so-called tax shield. In the following subsections we examine the effect of coupon

payments on DTA’s/DTL’s.

5.1 Carry forward

We assume that coupon payments are deducted from taxable income before deferred taxes

are used. A counterfactual firm (without deferred taxes), making yearly coupon payments

due to leverage, has the following post-tax asset value

Ã1 = A1 − C − τ(A1 − A0 − C)+, (5.1)
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where C is the coupon payment on debt. The rationale behind (5.1) is the following; part

of taxable income is reduced by coupon payments, this is the tax shield and appears in the

(·)+ term. Equation (5.1) contains (3.2) as a special case when debt (D) is zero, since C = 0

in that case.

Remark 5.2. The amount of coupon payment a firm can deduct from taxable income is

quite country specific. For example, countries like Italy have a limit on the amount of coupon

a firm can deduct, in order to eschew perverse incentives arising from debt financing. Because

we aim for some generality in our analysis, we model the amount of interest payments the

firm can deduct by an exogenous parameter γ ∈ [0, 1]. By doing so, (5.1) is replaced by

Ã1 = A1 − C − τ(A1 − A0 − γC)+. (5.3)

In analogy with Section 3 and by Remark 5.2 we get the following asset value after tax

for levered firms having some carry forward

Ã1 = A1 − C − τ(A1 − A0 − CF1 − γC)+. (5.4)

Deducting interest payments from net profits has repercussions for the carry forward value,

as the following example shows.

Example 5.5. Suppose an unlevered firm has 20 carry forward available (CF1 = 20) and

makes 10 profit in period one, i.e. A1 − A0 = 10. The firm can use 10 of the carry forward

to offset all taxable income. Now consider an identical firm, which is levered and pays 10

interest each year, i.e. C = 10 (and γ = 1). This means that the factual profit in period one

is zero, because A1 − A0 − C = 0. As a result, none of the carry forward can be used and

expires worthless. Hence, the DTA arising from carry forward is less valuable for levered

firms.

Thus, with leverage, generating fiscal loss becomes more likely, which decreases the prob-
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ability of settling carry forward.

5.2 Carry back

The post-tax asset value of a levered firm with carry back is equal to

Ã1 = A1 − C + τCB1 − τ(A1 − A0 + CB1 − γC)+. (5.6)

In contrast to carry forward, tax carry back increases in value as a result of leverage. This is

because fiscal profit/loss, as calculated by the difference in asset value less coupon payments,

is always less for a levered firm. Thus, it becomes more likely that carry back is materialized,

as the following example shows.

Example 5.7. Suppose that an unlevered firm has CB1 = 20 and incurs a loss of 15 in

period one , i.e. A1 − A0 = −15. It can use 15 of the carry back to neutralize the loss in

period one. Now consider an identical levered firm carrying interest cost of C = 10 each

year. For this firm, the net “profit” is −15− 10 = −25. With 20 carry back available, it can

materialize the complete DTA. Hence, in this case carry back is more valuable when a firm

is levered.

5.3 DTL

Finally, for firms carrying some tax liabilities (DTL), the post-tax asset value is given by

Ã1 = A1 − C − τ(A1 − A0 + LTD1 − γC)+. (5.8)

The following example shows that levered firms are less likely to repay the entire DTL

compared to unlevered firms.

Example 5.9. Take a firm having a deferred tax liability of 20 (i.e. LTD1 = 20). If a

firm makes a profit of 50 (A1 − A0 = 50) in the next period, then it has to pay taxes over
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70, instead of paying taxes over 50 if it did not have a tax obligation. Consider again an

identical firm, which is levered and makes interest payments of C = 10. Consequentially,

taxable income is equal to A1 − A0 − C + LTD1 = 60. Hence, the amount of taxes paid is

less for levered firms, so that the DTL value is greater for such firms.

6 Market consistent valuation of deferred taxes

In this section we derive explicit market consistent pricing formulas for the various deferred

tax items. Since the payoffs of all tax deferrals is reminiscent to the payoff of a European

call option, we use the “ideal market assumptions” from Merton (1974). In particular, this

implies that the value of the assets follow the stochastic differential equation

dAt = µAtdt+ σAtdW
P
t µ ∈ R, σ > 0, (6.1)

where µ is the growth rate, σ is the volatility of the assets and W P
t is the value of the

Brownian motion at time t under physical (probability) measure P .

These assumptions allow us to find a market consistent value of deferred taxes by dis-

counting the post-tax asset value at maturity under risk-neutral measureQ. The assumptions

above essentially imply that the valuation of deferred taxes is isomorphic to the valuation

of European call options. Since we adopt all necessary assumptions from Merton (1974), we

find that the market consistent value of tax deferrals is expressed as a linear combination of

Black-Scholes call/put option prices. For future reference, we state the Black-Scholes pricing

formula for European call options, expressed in the variables tailored to our model.
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CBS(K,T,At, σ, r, t) = AtΦ(d1)−Ke−r(T−t)Φ(d2), where (6.2)

d1 =
1

σ
√
T − t

[
log

(
At

K

)
+ (r +

σ2

2
)(T − t)

]
d2 = d1 − σ

√
T − t.

In this formula At is the starting value of the company in year t, K is the strike price, T

is the exercise date, σ is the volatility of the assets, r is the risk-free interest rate and Φ(·)

is the cumulative distribution function of the standard normal. We interpret the strike K

in (6.2) as the threshold from which a firm pays taxes. For example, for a firm without

fiscal history (see (3.2)), K = A0, since a firm pays taxes whenever A1 > A0. As such,

the quantity log(At/K) for 0 < t ≤ 1 in (6.2) represents the return on the assets when

substituting K = A0. Similarly, if a company has carry forward, (3.3) reveals that the strike

will be K = A0+CF1. In this and subsequent sections we use the following assumption and

notation

Assumption 6.3. The following parameters are fixed : σ, t, r, A0. To emphasize the de-

pendency on the varying parameter K, we write CBS(K) ≜ CBS(K,T = 1, A0, σ, r, t = 0).

Similarly, V, Vcb, Vcf, VA, VL denote the market consistent value of a firm without fiscal his-

tory, with carry back, with carry forward, with a DTA from temporary differences and with

a DTL from temporary differences respectively.

The valuation of deferred taxes is based on comparing the value of two hypothetical

firms having the same assets, with the only difference that one firm has deferred taxes on

the balance sheet. We frequently refer to the firm without deferred taxes as the counterfactual

firm. Our terminology is inspired by the potential outcome framework of Rubin (1974).

Definition 6.4 (Market consistent valuation). The market consistent value of a DTA/DTL

is defined as the difference in firm value between a company with deferred taxes and a
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counterfactual firm with the same assets, without having deferred taxes. The precise value

of the DTA/DTL then follows from comparing the discounted payoff of the post-tax assets

at final time t = T under martingale measure. We will henceforth refer to this quantity by

ξa, where the subscript refers to the type of DTA/DTL.

6.1 Carry forward

Let us now turn to the original quest of determining a market consistent valuation of deferred

taxes. First, we take a firm without fiscal history, whose asset value after tax at time one is

given by (3.2). This is a contingent T -claim, whose value at time zero is given by3

V = e−rEQ
(
A1 − τ(A1 − A0)

+|F0

)
= A0 − τCBS(K = A0), (6.5)

where CBS is the Black-Scholes price of a European at-the-money call option. In (6.5) we

have K = A0, so that by virtue of (6.2) we get d1 =
1
σ
(r+ σ2

2
) and similarly d2 =

1
σ
(r− σ2

2
).

It is well known that the Black-Scholes call option value is greater than or equal to the payoff

received at expiry. Hence, V is always less than the actual asset value minus tax at expiry

in (3.2).

Similar analysis allows us to find the market consistent value of a company with carry

forward. Again, by martingale pricing, the no-arbitrage value of a company with carry

forward is found by discounting (3.3)

Vcf = e−rEQ
(
A1 − τ(A1 − A0 − CF1)

+|F0

)
= A0 − τCBS(K = A0 + CF1). (6.6)

Notice that Vcf in (6.6) is always greater than or equal to V appearing in (6.5). This makes

sense, because a company having future tax deduction possibilities should be more valuable

3Throughout the paper, we always assume Ft = σ(Ws|0 ≤ s ≤ t), i.e. the sigma algebra generated by
the Brownian motion up to time t.
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than a company that doesn’t have these possibilities. By Definition 6.4, the market consistent

DTA value of carry forward follows by comparing (6.6) with (6.5), which yields

ξcf ≜ Vcf − V = τ

(
CBS(A0)− CBS(A0 + CF1)

)
. (6.7)

Equation (6.7) is monotonically increasing in CF1 and always bigger than zero, however for

large values of CF1 the additional benefit of extra carry forward is rather limited. This can

also be seen from Figure 2a, which shows the diminishing marginal returns of carry forward

for various tax rates. The reason is that expected profits are insufficient to utilize additional

carry forward.

It is instructive to analyze the sensitivity of the DTA (or DTL) value with respect to

the variable from which the DTA arises (such as CF1). The following proposition facilitates

these computations, which is a standard result in option pricing theory, see e.g. Ross (1976),

Breeden and Litzenberger (1978) and Dupire et al. (1994).4

Proposition 6.8. For a standard European call option with constant interest rate we have

the following expression for the first and second derivative with respect to the call price

∂

∂K
C(K,T,At, σ, r, t) = −e−r(T−t)(1− F (K))

∂2

∂K2
C(K,T,At, σ, r, t) = e−r(T−t)f(K),

where F (K) and f(K) are the risk-neutral CDF and PDF of the underlying asset respectively.

By Proposition 6.8, the derivative of (6.7) is given by

∂

∂CF1

ξcf = τe−r(1− F (A0 + CF1)). (6.9)

Equation (6.9) leads to an interesting interpretation. Because F (x) is the risk-neutral prob-

ability that assets at time one are less than x, we can rewrite (6.9) to τ exp(−r)Q(A1 >

4These expressions are independent of the Black-Scholes model.
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A0 +CF1), where Q is the risk-neutral measure.5 In other words, the sensitivity w.r.t. CF1

is equal to the probability of {ω ∈ Ω : A1(ω) > A0 + CF1} under the risk-neutral measure

Q, weighted by a discount factor consisting of the tax rate τ and the risk-free rate. The

event {ω ∈ Ω : A1(ω) > A0 + CF1} corresponds to the risk-neutral probability that the en-

tire carry forward will be used. This bears some resemblance to current valuation methods,

which are discussed in Section 7.1. The variable τ works as a kind of amplification factor;

higher tax rates increase the sensitivity of the DTA to CF1 because a change in CF1 has a

more pronounced effect on firm value.

Since distribution functions are always bounded by one (and non decreasing), it follows

that (6.9) is always positive. Taking the (formal) limit CF1 → ∞ renders that (6.9) goes to

zero. Initially, if CF1 is small, there is a high probability that the entire carry forward can

be used for tax deduction, so a small change leads to a relatively big change in DTA value.

On the contrary, if CF1 is high, it is not likely that the entire carry forward will be used for

tax deduction (since future profits are unlikely to settle the complete carry forward), so that

a change in CF1 does not have a considerable effect on the DTA value. Figure 2b illustrates

the behavior of (6.9) for different tax rates.

Figure 3a shows the value of CF1 according to (6.7) together with the value of CF1 at

maturity. Initially the market consistent value of carry forward is worth more than the final

value at maturity. This is because there still exists a probability that some of the carry

forward will be used. At some point, however, the upward potential is not enough to offset

the guaranteed carry forward value at maturity, causing the graphs to intersect so that the

market consistent value is worth less than the guaranteed payoff for large values of A1. The

structure of the payoff has the same form as that of a bull call spread, which corresponds to

the option trading strategy used by investors to profit from the limited rise of an underlying

security.

5In fact, we know that in the Black-Scholes model F (x) is the CDF of the Log-normal distribution.
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(b) Derivative of DTA from carry forward (6.9) as a
function of carry forward (CF1) for different tax rates.
Parameters: A0 = 100, r = 0.05, σ = 0.2.
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6.2 Carry back

The market consistent value of a company with carry back follows by discounting (3.4),

which gives

Vcb = e−rEQ(A1 + τCB1 − τ(A1 − A0 + CB1)
+|F0)

= A0 + e−rτCB1 − τCBS(K = A0 − CB1). (6.10)

In a similar vein, we obtain the market consistent DTA value of carry back by comparing

the difference (6.10) and (6.5)

ξcb ≜ Vcb − V = e−rτCB1 − τ

(
CBS(A0 − CB1)− CBS(A0)

)
. (6.11)

Equation (6.11) expresses the DTA value of carry back as a linear combination of two factors.

The first one corresponds to the value of carry back today if no settlement risk were involved.

However, because it is not guaranteed that the (entire) carry back will be materialized at

period one, the second term is subtracted to take this risk into account. By Proposition 6.8,

the sensitivity of carry back to its DTA value is expressed by

∂

∂CB1

ξcb = τe−r

(
1−

(
1− F (A0 − CB1)

))
= τe−rF (A0 − CB1). (6.12)

The factor after the tax rate is the probability that A1 exceeds the asset value at time

zero minus the carry back under the risk neutral measure Q, i.e. Q(A1 < A0 − CB1). So
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alternatively we may write6

∂

∂CB1

ξcb = τe−rQ(A1 < A0 − CB1).

The probability of the event {ω ∈ Ω : A1 < A0 − CB1} = {ω ∈ Ω : A0 − A1 ≥ CB1} is the

probability (under risk-neutrality) that the loss in period one is sufficient to materialize the

complete carry back. Also, from here it follows that (6.12) is always greater than zero and

decreasing in CB1 until CB1 ≤ A0 after which it vanishes since {ω ∈ Ω : A1(ω) ≤ 0} has

(risk-neutral) probability measure zero. The latter observation holds since we always have

the constraint CB1 ≤ A0. If this condition is not satisfied, the asset value prior to time t = 0

(say t = −1) would be less than zero, i.e. A−1 < 0. This cannot happen with probability

one since the asset value is always bigger than zero by definition. Figure 4 shows the value

of CB1 in the market consistent model together with its value at expiry. In contrast to carry

forward, the DTA value is less than the payoff at maturity when A1 is small. The “payoff”

structure of carry back is similar to the bear spread strategy, which is used by option traders

to profit from the limited decrease of an underlying security.

6.3 DTA from temporary differences

The post-tax asset value of a firm with a DTA from temporary differences is given by (3.6).

Discounting under risk-neutral measure gives the firm value

VA = e−rEQ(A1 − τ(A1 − A0 − ATD1)
+|F0)

= A0 − τCBS(K = A0 + ATD1)

6The eventQ(A1 < A0−CB1) can be written down in explicit terms. LetX ∼ N(0, 1), thenQ(A1 < A0−
CB1) = Q(A0 exp(r−σ2/2+σX) < A0−CB1) = Q(X ≤ 1

σ (log(
A0−CB1

A0
)+σ2/2−r)) = Φ

(
1
σ (log(

A0−CB1

A0
)+

σ2/2− r)
)
.
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Figure 4: Value of CB1 under Black-Scholes vs. payoff at maturity. Parameters: r =
0.05, σ = 0.2, A0 = 100, CB1 = 40.

Since the post-tax payoff is equivalent to that of carry forward, we find the same structure

for the firm value of a company having a DTA from temporary differences. Therefore, the

sensitivity analysis is completely equivalent and will be omitted.

6.4 DTL from temporary differences

The firm value of a company with a deferred tax liability follows by discounting (3.7) under

martingale measure, which yields

VL = e−rEQ(A1 − τ(A1 − A0 + LTD1)
+|F0) (6.13)

= A0 − τCBS(A0 − LTD1).

We stick to the convention of modeling the difference between normal tax conditions and

a DTL by a negative quantity. Thus the market consistent DTL value is obtained by sub-
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tracting (6.13) from (6.5), which gives

ξL ≜ VL − V BS = τ

(
CBS(A0)− CBS(A0 − LTD1)

)
. (6.14)

The shape of (6.14) as a function of A1 is similar to that of carry back, which can be seen from

Figure 3b. However, this time the values are negative, since the DTL is a tax obligation and

hence a future liability. For large values of A1, the untaxed profit (as measured by LTD1)

has to be paid in its entirety to the tax authority, by the amount of τ · LTD1.

At last we turn to the sensitivity of the DTL to the untaxed profit LTD1. Straightforward

differentiation of (6.14) in conjunction with Proposition 6.8 gives

∂

∂LTD1

ξL = −τe−r(1− F (A0 − LTD1)) = −τe−rQ(A1 > A0 − LTD1). (6.15)

Hence, higher values of LTD1 increase the likelihood of {ω ∈ Ω : A1(ω) > A0 − LTD1},

which means that (6.15) is decreasing in LTD1, but stabilizes when LTD1 ≥ A0. The latter

condition is excluded, since LTD1 < A0 by construction.7 A company starts to lose value

from the moment A1 > A0−LTD1, so higher values of LTD1 lead to a more severe reduction

in asset value compared to a firm with lower LTD1. Hence, the slope of (6.14) ought to be

decreasing.

6.5 Aggregate DTA value

We now outline how the valuation formulas for DTA’s/DTL’s can be combined into a single

formula that incorporates all four market consistent DTA/DTL values.

Theorem 6.16 (Aggregate deferred tax value). The market consistent net DTA value is

7Remember that LTD1 is the untaxed profit made in period t = 0, so that LTD1 + A−1 = A0 =⇒
LTD1 < A0.
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given by

ξ = e−rτ(CF1 + ATD1 − LTD1 + CB1)

− τ

(
PBS(A0 + CF1 + ATD1 − LTD1)− PBS(A0)

)
− τ

(
CBS(A0 − CB1)− CBS(A0)

)
. (6.17)

Remark 6.18. There is no subscript for ξ(·) in (6.17). Whenever the subscript is omitted,

we indicate the aggregate DTA value.

Proof. First, combine the payoffs (3.3), (3.6) and (3.7) into the single equation

Ã1 = A1 − τ(A1 − A0 − CF1 − ATD1 + LTD1)
+. (6.19)

We interpret (6.19) as the net DTA position, apart from carry back. In this case the strike

equals K = CF1 + ATD1 − LTD1. Let us temporarily write Υ = CF1 + ATD1 − LTD1.

Recall the put-call parity :

C(K) +Ke−r = P (K) + A0, (6.20)

where P (K) is the value of a European put option with strike K and we maintain the same

notation as for the call option. The market consistent DTA value of carry forward (6.7) is

the difference between two call options. Hence, put-call parity gives

ξ = τ

(
CBS(A0)− CBS(A0 +Υ)

)
P-C parity

= τ

(
PBS(A0) + A0 − A0e

−r − (PBS(A0 +Υ) + A0 − (A0 +Υ)e−r)

)
= e−rτΥ− τ

(
PBS(A0 +Υ)− PBS(A0)

)
= e−rτ(CF1 + ATD1 − LTD1)− τ

(
PBS(A0 + CF1 + ATD1 − LTD1)− PBS(A0)

)
.

(6.21)
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As a result, the aggregate market consistent net DTA value is obtained by adding (6.21) and

(6.11), which yields

ξ = e−rτ(CF1 + ATD1 − LTD1 + CB1)

− τ

(
PBS(A0 + CF1 + ATD1 − LTD1)− PBS(A0)

)
− τ

(
CBS(A0 − CB1)− CBS(A0)

)
.

Equation (6.17) is the sum of three components: the discounted value of deferred taxes

when no settlement risk is involved, the difference between two put options and the difference

between two call options both included to reflect settlement risk. By construction, carry back

and carry forward are mutually exclusive, which means it is impossible to have carry forward

and carry back at the same time. Our interpretation of (6.17) is therefore as follows:

• If the firm has loss carry forward, then CB1 = 0 and (6.17) reduces to

ξ = e−rτ(CF1 + ATD1 − LTD1)

− τ

(
PBS(A0 + CF1 + ATD1 − LTD1)− PBS(A0)

)
.

• If the firm has loss carry back, then CF1 = 0 and (6.17) reduces to

ξ = e−rτ(ATD1 − LTD1 + CB1)

− τ

(
PBS(A0 + ATD1 − LTD1)− PBS(A0)

)
− τ

(
CBS(A0 − CB1)− CBS(A0)

)
.

In both situations it is perfectly possible to have deferred taxes from temporary differences

alongside carry back or carry forward.
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7 Differences with current accounting and valuation

practices

We now compare our market consistent approach to the extant accounting valuation tech-

niques. These practices ignore value creation due to loss carry back, neither are deferred

taxes coming from temporary differences covered. Hence, we only compare our valuation

techniques based on loss carry forward. As a result, the aggregate net DTA value in (6.17)

collapses to the market consistent carry forward value in (6.7).

7.1 GAAP and IAS12

In Section 3.3 we explained that extant valuation procedures acknowledge the underlying

value of the different type of DTA/DTL as the nominal amount appearing on the balance

sheet. We compare our method to two frequently employed accounting principles: GAAP

and IAS12. Most other accounting guidelines use techniques for valuing deferred taxes by

methods either based on GAAP or IAS12. However, both of these guidelines neglect carry

back possibilities and the value creation as a result of this possibility. Hence, we only draw

comparison to carry forward valuation.

Let us first analyze the way under which GAAP computes the value of carry forward. Un-

der GAAP principles, carry forward is recognized whenever there is a more than 50% chance

that future profit settles the complete carry forward (The Financial Accounting Standards

Board (1992), Waegenaere et al. (2003)).

In other words, the DTA arising from carry forward is recognized completely if and only

if the probability of materializing the entire carry forward has a more than 50% chance. If

this is not the case, a valuation allowance (VA) is issued, which reduces the overall DTA

value. In our model, this translates to the condition

P (A1 − A0 ≤ A∗
1) =

1

2
,
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where A∗
1 is the median profit and P (·) the physical probability measure. The geometric

Brownian motion assumption of the asset process (6.1) renders the explicit expression A∗
1 =

A0e
µ−σ2/2 − A0. Hence, for carry forward, a valuation allowance is issued whenever

CF1 > A∗
1 ⇐⇒ CF1 > A0(e

µ−σ2/2 − 1). (7.1)

This expression reveals that sufficiently large values of volatility always lead to the issuance

of a valuation allowance, i.e. when σ2/2 ≫ µ. Secondly, it is less likely that a valuation

allowance is issued for large values of the starting value A0 when µ − σ2/2 > 0. This is

because the geometric Brownian motion assumption on the asset process is concerned with

relative profits. So for higher values of A0, a small percentage change leads to a more

pronounced difference in absolute asset values, which makes it more likely that the complete

carry forward will be settled. In analogy to Waegenaere et al. (2003), a valuation allowance

(VA) is issued if (7.1) holds and the corresponding balance sheet value is given by

V A =

(
τ
(
CF1 − A∗

1

))+

.

The DTA value under the GAAP approach thus takes the form

ξcf,GAAP ≜ DTA− V A (7.2)

= τ

(
CF1 − (CF1 − A∗

1)
+

)
.

It follows from (7.2) that the DTA value arising from carry forward stabilizes when it hits

the threshold level for which it becomes more likely than not to settle the complete carry

forward. Interestingly, in Figure 5a we see that the GAAP approach is higher for small

values of CF1 but is lower for high values of CF1. However, this relation is ambiguous as

A∗
1 depends on the growth parameter µ. To see this, for large values of CF1, the DTA value

of carry forward ξBS
cf in (6.7) goes to τCBS(A0). In contrast, ξcf,GAAP → τA∗

1 for large values
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of CF1. Therefore, the relation boils down to comparing CBS(A0) with A∗
1. However, the

relation between these two quantities is inconclusive because A∗
1 depends on µ. For the par-

ticular case shown in Figure 5a, µ is chosen small enough such that the market consistent

value is eventually higher than the GAAP value. But we might equally well take µ so large

that the relationship breaks down eventually.8 On the other hand, it always holds true that

the GAAP approach renders higher values for the DTA when CF1 < A∗
1.

Valuation guidelines of deferred taxes under IAS12 are less flexible. According to these

accounting principles, deferred taxes are recognized only if there is a more than 50% chance

that the complete DTA will be materialized (Deloitte, 2017). Otherwise, the deferred tax

asset is not recognized. Hence, we have the following value of the DTA arising from carry

forward under IAS12

ξcf,IAS12 = τ1{CF1≤A∗
1}CF1.

The carry forward value under IAS12 in Figure 5a (green line) concurs with the GAAP

value, but vanishes as soon as carry forward exceeds the median profit. In some sense,

our model contains the GAAP and IAS12 approach as a special case, namely if we take

limσ→0+ ξBS
cf = τe−rCF1, provided that (er−1)A0 > CF1. This is almost equal to the GAAP

and IAS12 value, apart from the discounting term. Our model not only encompasses the

GAAP and IAS12 approach as special cases, but is preferred in certain other aspects:

(i) The market consistent approach does not depend on the subjective substantiation of

future profit. In our model, the uncertainty of future profit is implicitly measured by

the volatility of the assets σ, which determines the likelihood of materializing the entire

carry forward under all future scenarios.

(ii) If the probability of realizing the entire carry forward is considerable, the GAAP and

IAS12 approach are not in line with conventional economic theory, which suggests that

8In fact, µ = 0.12 is already sufficient in this example.
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the nominal carry forward value should at least be discounted to reflect time preferences.

However, the precise discounting value is somewhat diffuse and depends on parameters

difficult to measure, such as likelihood and timing of the settlement (Givoly and Hayn,

1992). Other researchers even find evidence against discounting of deferred taxes (e.g.

Amir et al. (1997)), which can be explained by assuming a skewed income distribution

(Waegenaere et al., 2003).
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Figure 5

As in the previous section(s), we analyze the sensitivity of the conventional accounting

valuation principles to carry forward. The GAAP and IAS12 valuation methods are not

classically differentiable. At least the GAAP approach gives rise to a function that is weakly

differentiable, where the weak derivative is given by9

∂

∂CF1

ξcf,GAAP =


τ, for CF1 ≤ A∗

1

0, else.

(7.3)

9Recall that a function f has weak derivative g if
∫
R f(x)φ(x)′dx = −

∫
R g(x)φ(x)dx for all φ ∈ C∞

c (R),
which is the space of smooth functions with compact support.
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The sensitivity is larger compared to the market consistent sensitivity in (6.9) at each point

on the support of (7.3).

Another illuminating quantity is the dependence on the initial start value A0, which is

shown in Figure 5b. Initially, the asset value is so small that materializing the complete

carry forward is unlikely. Hence, under GAAP principles, a valuation allowance is issued,

which reduces the nominal value of CF1. However, at some point, the initial asset value is

large enough so that the probability of materializing the complete carry forward is larger

than 50%. At this point, ξcf,GAAP stabilizes and becomes constant. This is also the point

where ξcf,IAS12 gets positive and concurs with IAS12 (green line in Figure 5b). Both ξcf,GAAP

and ξcf,IAS12 converge to τCF1 for large values of A0.

Remark 7.4. The size of A0 relative to CF1 plays an important role in the loss absorbing

capacity of deferred taxes. After a negative shock in the asset value, a loss is incurred, which

can be used as carry forward. Hence, CF1 increases, but the asset value decreases. The asset

value after shock can be so low that the market consistent carry forward is actually worth

less than it was before, even though the nominal value increased.

8 Valuation of deferred taxes including levered firms

8.1 Valuation of debt

We first discuss the valuation of debt before we introduce market consistent prices for tax

deferrals of levered claims. Since debt is not assumed to be risk-free we cannot assume

that the coupon payment in year one equals C = (er − 1)D. Instead, we opt for a market

consistent valuation of debt, which incorporates the limited liability of bondholders, just as

in Merton (1974). However, we cannot directly apply Merton’s result, since tax payments

may influence bankruptcy conditions.

In the following, we always assume that the debt value at time t = 0 (denoted by D0) is

less than the asset value at time zero, i.e. D0 ≤ A0. Moreover, we also assume that claims
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by the tax authority rank above those of general creditors and equity holders. In the U.S.,

this is called the absolute priority rule (Brouwer, 2006). This is important, since it may

happen that the firm is solvent before paying taxes, but insolvent after tax is levied. Over

a one year time horizon, this can only happen if γ < 1.

Example 8.1. Suppose A0 = 100, D = 95, C = 20, γ = 0.5 and τ = 0.5. In addition,

assume that A1 = 118 (before tax). Notice that before tax, the company is solvent, since

A1 > D + C = 115. However, the post-tax asset value is Ã1 = A1 − τ(A1 − A0 − γC)+ =

114 < D + C and the company is bankrupt.

Remark 8.2. One cannot concoct similar examples if γ = 1.

Hence, we assume that bankruptcy is triggered whenever Ã1 < D + C. Therefore, in

period one, debtholders receive

C +min(Ã1, D).

Using the risk-neutral pricing paradigm, we obtain the market consistent value of debt in

period zero

D0 = e−rC + e−rEQ
(
min(D, Ã1)

)
, (8.3)

which is recognized as Merton’s debt value (Merton, 1974) with coupon payments. The

precise form of Ã1 depends on the availability of deferred taxes.

8.2 Carry forward

Initially, we suppose that γ = 1, so that a firm can subtract all interest payments from

taxable income. In this case, carry forward has no influence on the bankruptcy condition,

since bankruptcy only occurs if the firm incurs a loss. This is because we assume that
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D0 ≤ A0. Hence, by writing min(D, Ã1) = D − (D − Ã1)
+, (8.3) equals

D0 = e−r(C +D)− e−rEQ
(
(D − Ã1)

+
)

= e−r(C +D)− e−rEQ
(
(D + C − A1)

+
)

= e−r(D + C)− PBS(D + C). (8.4)

The second line follows from Ã1 < D ⇐⇒ A1 − C < D, since no taxes have to be paid

in case of a loss. The notation PBS(K) denotes the Black-Scholes price of a European call

option with strike K. We choose C such that D0 = D. The solution can be obtained by

numerical methods, e.g. Newton-Raphson iteration. The resulting coupon payment is shown

in Figure 6a as a function of D. For sufficiently high levels of debt, the coupon C is seen to

rise exponentially as a consequence of the imminence of bankruptcy.
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Figure 6: The left panel shows the coupon payment C on risky debt as a function of debt D
for companies with different deferred taxes. The right panel shows the DTA/DTL value of
levered firms seen as a function of debt. The coupon payment corresponding to debt level D0

is determined via numerical methods and depends on the deferred tax. In both figures, the
parameters are A0 = 100, r = 0.05, σ = 0.2, τ = 0.25. In the left panel CB1 = 10, LTD1 =
30, γ = 1., whereas in the right panel CF1 = CB1 = LTD1 = 20.

The more general case corresponding to γ ∈ [0, 1] yields a more complicated form than

(8.4). In particular, D0 for fixed C corresponding to a firm without deferred taxes follows
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from the next proposition.

Proposition 8.5. The debt value at time zero for a firm without deferred taxes is given by

D0 = e−r(D + C)− e−r(D + C)Φ(θ3) + A0Φ(θ3 − σ),

if D + C ≤ A0 + γC. Otherwise

D0 = e−r(D + C)− e−r(D + C)Φ(θ2) + A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + γC)[Φ(θ2)− Φ(θ1)].

In these expressions

θ1 =
1

σ

[
log

(
A0 + γC

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + C − τ(A0 + γC)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + C
A0

)
− r + σ2/2

]
.

Proof. See Appendix A.1.

Likewise, debt at time zero for companies with carry forward follows from the next

proposition.

Proposition 8.6. The debt value at time zero for a firm having CF1 is given by10

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ3) + A0Φ(θ3 − σ),

10The subscript a in Ca refers to the specific type of deferred tax. No subscript indicates a firm without
deferred taxes.
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if D + Ccf ≤ A0 + CF1 + γCcf. Otherwise

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ2) + A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + CF1 + γCcf)[Φ(θ2)− Φ(θ1)].

In these expressions

θ1 =
1

σ

[
log

(
A0 + CF1 + γCcf

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccf − τ(A0 + CF1 + γCcf)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccf

A0

)
− r + σ2/2

]
.

Proof. See Appendix A.2.

From Proposition 8.5 and Proposition 8.6, the Newton-Raphson method can be employed

to find C (or Ccf) such that D0 = D. In this case, there is a difference between the coupon

paid by firms without deferred taxes and one that has carry forward. The disparity arises if

0 ≤ γ < 1. To see this, note that if D + C > A0, a firm can go bankrupt even if it makes

a profit in period one. When interest payments are fully deductible (γ = 1), the firm never

has to pay taxes over that profit. However, when γ < 1, some profit will be taxed, and this

tax deduction might be enough to trigger the bankruptcy condition.11

Having established the coupon C, we now turn to the valuation of levered firms and their

deferred taxes. The value of a levered firm without deferred taxes is given by discounting

the assets at time one (5.1), plus the coupon payment to creditors

V = e−rE(Ã1 + C|F0) = A0 − τCBS(K = A0 + γC). (8.7)

We henceforth denote the value of levered firms by Va, to distinguish it from unlevered

11The absolute priority rule ensures that taxes are levied first, before bondholders can file for bankruptcy.
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firms. Consistent with previous notation, subscript a depicts the deferred tax available at

the starting period. The strike value in (8.7) is higher compared to unlevered firms, since

interest deductions lead to a tax advantage. The interest deduction also contains an option

component, as it is not certain that the entire interest payment can be deducted from taxable

income, e.g. when a firm incurs a loss, so there is no taxable income to offset the interest

payment.

The market consistent pricing approach gives the value of a levered firm having some

carry forward by discounting (5.4) and adding the coupon payment

Vcf = e−rEQ(Ã1 + Ccf|F0) = A0 − τCBS(K = A0 + CF1 + γCcf). (8.8)

Remark 8.9. Since our approach to valuing DTA’s/DTL’s has been to compare firm values

with an otherwise identical firm, which does not have deferred taxes (Definition 6.4), we

must assume that coupon payments for the reference firm are the same to avoid circular

reasoning. To facilitate subsequent sensitivity calculations, we therefore chose to set Ccf = C

when valuing carry forward.

As a result, the DTA value arising from carry forward for levered firms is given by the

difference (8.8) and (8.7)

ξcf = τ

(
CBS(A0 + γC)− CBS(A0 + CF1 + γC)

)
. (8.10)

Equation (8.10) contains the unlevered DTA value of carry forward (6.7) as a special case

when γ = 0 or D = 0. The value of carry forward for levered firms in (8.10) is smaller in

comparison to the value of carry forward for unlevered firms in (6.7). Mathematically, this

is evident from Proposition 6.8, as the derivative of a European call option to the strike is

decreasing in absolute value. The slope of the call option seen as a function of the strike

is steeper, so the difference between two call options is greater compared to the difference

between two call options further in the tail. There is also some economic rationale behind
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this result. The value of a DTA coming from carry forward is positively dependent on the

amount of tax payments. In case a firm is levered, less tax is paid due to the interest

tax shield. Hence, the overall DTA is reduced in value compared to unlevered firms. The

relation between debt and the DTA value of carry forward is shown in Figure 6b. The

negative relationship between the DTA value arising from carry forward and debt is clearly

visible. The DTA value even tends to zero when a firm is extremely leveraged, because

coupon payments are excessive in those cases.

The sensitivity of the DTA value for levered firms is given by

∂

∂CF1

ξcf = τe−r(1− F (A0 + CF1 + γC)) = τe−rQ(A1 > A0 + CF1 + γC).

This is lower than the sensitivity for unlevered firms, since the probability that A1 exceeds

the term on the right is lower when interest payments are included. Ceteris paribus, a levered

firm is less likely to profit from the full carry forward than an unlevered firm, so a small

change in carry forward has less impact on the overall value for levered firms.

8.3 Carry back

In case a firm has CB1 at year one, bankruptcy can be avoided in the event of a severe loss,

by reclaiming previous tax expenses. This suggests that the coupon payment for companies

with carry back should be lower compared to firms without deferred taxes (or firms with

carry forward when γ = 1). In this case, the debt value at t = 0 follows from the following

result.

Proposition 8.11. The debt value at time zero for a company having CB1 is given by

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ3) + A0Φ(θ3 − σ),
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if D + Ccb ≤ A0 − CB1 + γCcb. Otherwise

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ2) + A0Φ(θ2 − σ)

− e−rτ(CB1 − A0 − γCcb)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

In these expressions

θ1 =
1

σ

[
log

(
A0 − CB1 + γCcb

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccb − τ(A0 + γCcb)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccb − τCB1

A0

)
− r + σ2/2

]
.

Proof. See Appendix A.3.

Again, Newton-Raphson can be used to find Ccb such that D0 = D. Even if γ = 1, the

coupon payments for firms with carry back are lower compared to those of the reference firm

(see Figure 6a). As a result, the value of a firm having some carry back is calculated by

discounting (5.6) and adding the coupon

Vcb = e−rE(Ã1 + Ccb|F0) = A0 + e−rτCB1 − τCBS(K = A0 + γCcb − CB1). (8.12)

To avoid circular reasoning, we assume once more that Ccb = C. The DTA value for carry

back is then given by the difference between (8.12) and (8.7)

ξcb = τe−rCB1 − τ

(
CBS(A0 + γC − CB1)− CBS(A0 + γC)

)
. (8.13)

In contrast to carry forward, the DTA value arising from carry back is actually more valuable

when a firm is increasingly leveraged. The last two terms in (8.13) are smaller in difference

compared to the last two terms appearing in (6.11) for unlevered firms. This is due to the
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higher strike value of the call option, which is also visible in Figure 6b. The economic reason

behind this phenomenon comes from the coupon payments, which decreases fiscal loss even

further. Hence, in case of a loss, it is more likely that a higher part of the carry back will be

materialized, which increases the value of the DTA. The derivative of the DTA value to the

carry back is given by

∂

∂CB1

ξcb = τe−rF (A0 + γC − CB1) = τe−rQ(A1 < A0 + γC − CB1).

This is higher compared to unlevered firms. The same carry back value has higher probability

of being realized, so that a small change in the carry back has more influence on the DTA

value when a firm is levered.

8.4 DTL

A firm having a deferred tax liability is more likely to go bankrupt, since even in case of a loss

the firm might be obliged to pay taxes. Thus, it can potentially happen that A1 > D + CL,

but after taxes Ã1 < D+CL. This should be taken into account when calculating the coupon

CL and implies that CL is generally higher for firms having a DTL in comparison to firms

without deferred tax obligations.

Proposition 8.14. The debt value at time zero for a firm having LTD1 is given by

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ3) + A0Φ(θ3 − σ),

if D + CL ≤ A0 − LTD1 + γCL. Otherwise

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ2) + A0Φ(θ2 − σ)

− e−rτ(LTD1 − A0 − γCL)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].
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In these expressions

θ1 =
1

σ

[
log

(
A0 − LTD1 + γCL

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + CL − τ(A0 − LTD1 + γCL)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + CL
A0

)
− r + σ2/2

]
.

Proof. See Appendix A.4.

The resulting coupon payments are higher compared to those of the reference firm, which

can be seen from Figure 6a. The market consistent firm value follows from discounting (5.8)

and adding the coupon payment

VL = e−rEQ(Ã1 + CL|F0) = A0 − τCBS(K = A0 + γCL − LTD1). (8.15)

Once again we impose that CL = C to avoid circular reasoning. The DTL value is given by

comparing (8.15) and (8.7)

ξL = VL − V = τ

(
CBS(A0 + γC)− CBS(A0 + γC − LTD1)

)
. (8.16)

The DTL value arising from temporary differences for levered firms is greater compared to

unlevered firms due to higher strike values. Economically, this holds since coupon payments

reduce fiscal profits, which makes it less likely that untaxed profit remains in period one.

The sensitivity of the DTL value (8.16) to a change in untaxed profit equals

∂

∂LTD1

ξL = τe−r(1− F (A0 + γCL − LTD1)) = τe−rQ(A1 > A0 + γCL − LTD1).

Hence, the DTL value arising from temporary differences is less sensitive to a change in the

untaxed profit when a firm is levered. A change in LTD1 has less influence on tax payments
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as coupon payments make it less likely that such tax payments are materialized.

8.5 Valuation interest tax shield

We can obtain a market consistent value of the tax shield under Assumption ?? by adapting

the valuation formulas for levered firms. The interest tax shield derives its value from the

uncertainty related to the fact that not all of the interest tax shield will be materialized.

However, the extent to which a firm is able to profit from the tax shield depends on the

fiscal history. Figure 7 shows the difference in tax payments for levered and unlevered firms

for two type of companies; a reference firm without fiscal history and a firm having a DTL.

The difference between each of the graphs is what determines the tax shield value.
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Figure 7: Tax payments for levered and unlevered firms with different fiscal history. For
the reference firm in the left panel, C = 12, and the firm with a DTL in the right panel,
LTD1 = 20 and CL = 13. Other parameters: A0 = 100, τ = 0.25.

There is no general consensus in the literature about tax shield valuation. This topic

started off with the classical article of Modigliani and Miller (1963), which suffers from

some serious drawbacks such as risk-free debt and the tacit assumption that the tax shield

will be completely materialized each year. Numerous investigations have tried to improve

upon this work, such as Kemsley and Nissim (2002) who assess the impact of debt financing

by cross sectional regression, concluding that firm value is a strongly positive function of
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debt. Arzac and Glosten (2005) take a more theoretical approach, in which future cash flows

arising from tax payments are discounted by a pricing kernel. The value of the tax shield

is subsequently obtained as the difference in tax payments for levered and unlevered firms.

Arzac and Glosten (2005) show that their framework contains the Modigliani-Miller theorem

as a special case, by making specific assumptions about the dynamics of the free cash flow

process. In line with Arzac and Glosten (2005), we calculate the value of the tax shield by

subtracting the enterprise value of an unlevered firm from a levered firm. In particular, the

following theorem presents the valuation of the two type of interest tax shields that might

arise in our model.

Theorem 8.17. The interest tax shield corresponding to firms with different fiscal history

is given by

(i) For firms with no fiscal history, carry forward or carry back

R ≜ V − V = τ

(
CBS(A0)− CBS(A0 + γC)

)
. (8.18)

(ii) For firms with a DTL arising from temporary differences

RL ≜ VL − VL = τ

(
CBS(A0 − LTD1)− CBS(A0 − LTD1 + γC

)
. (8.19)

Proof. For (i), simply subtract (6.5) from (8.7). In Section 5.1 we assumed a specific order

for the coupon payments. After accounting for coupon payments, carry forward/back can

be used for the remaining profit/loss. Hence, under this assumption, deferred tax assets like

carry forward/back are immaterial for tax shield valuations. They only have an influence on

the coupon payments, but to avoid circular reasoning coupons are taken to be the same as

those of the reference firm. Finally, (ii) takes into consideration that, ex-ante, it is known

that additional taxes are levied over LTD1 in period one. Therefore, a DTL makes it more

likely that part of the tax shield is materialized and the value is obtained by subtracting
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(6.13) from (8.15).

Remark 8.20. This theorem is markedly different than the conventional Modigliani-Miller

theorem, which (in our notation) states that

R = e−rτC. (8.21)

Modigliani and Miller (1963) tacitly assume that the full interest tax shield can be deducted

each year, which is not generally valid since taxable income might not be sufficient to com-

pensate the entire tax advantage. Our model does account for this risk, which is reflected

by the option price formulas in the previous theorem. The model for firms without fiscal

history (8.18) contains the Modigliani-Miller theorem as a special case, which can be seen by

taking σ → 0+ in (8.18).12 Using the Black-Scholes formula (6.2) gives that (8.18) converges

to

lim
σ→0+

RBS = τe−rγC,

provided (er − 1)A0 > γC. Mathematically, this condition derives from the fact that d2 in

(6.2) goes to infinity if and only if log(A0/(A0 + γC))+ r > 0 when σ → 0+.13 In our model,

the condition expresses that taxable income (as measured by (er − 1)A0) should be greater

than γC in order to benefit completely from the tax shield. If all interest payments can be

deducted from taxable income (i.e. γ = 1), this is precisely the (continuously) discounted

interest tax shield.

Figure 8 shows the value of the tax shield as a function of debt. The option interpretation

of the tax shield renders values lower than the Modigliani-Miller approach, since this model

takes into account that part of the tax shield may not be settled in period one. The valuation

difference is most pronounced when a firm is highly leveraged, due to the exponential rise in

coupon payments. Figure 8 also shows that the tax shield is more valuable for firms with a

12There is no explicit σ in (8.18) since we assumed it was constant throughout our analysis. However,
the DTA/DTL values do depend on this quantity.

13The strike value of the option is K = A0 + γC.
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Figure 8: Interest tax shield seen as a function of debt. The Modigliani-Miller value is given
by (8.21), whereas the value of the reference firm and the firm with DTL are given by R
and RL respectively. Parameters: r = 0.05, σ = 0.2, τ = 0.25, A0 = 100, LTD1 = 10, γ = 1.
Bankruptcy cost are zero (α = 0).

DTL, although the difference with a reference firm is relatively moderate.

9 Loss absorbing capacity of deferred taxes (LAC DT)

for European insurers

As a practical implementation of the theory developed in previous chapters, we analyze the

impact of our new valuation approach to the loss absorbing capacity of deferred taxes on

European insurance companies. The recently established Solvency II regulations (analogue

of Basel III for insurers) dictate that European insurers should maintain a Solvency ratio

ratio greater than one, where

Solvency ratio =
Eligible own funds

Solvency capital requirements
.
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The Solvency capital requirements (SCR) are calculated such that an insurer can withstand

a shock that occurs once every 200 years (this is essentially the 99.5% VaR). The standard

formula used to calculate the SCR makes use of a modular approach (EIOPA, 2014). This

means that the overall risk is subdivided into sub risks and sub-sub risks. For each sub

risk (or sub-sub risk) one calculates the capital requirements (corresponding to a 99.5% VaR

over a one year period). All these capital requirements are aggregated using correlation

matrices, which results in the Solvency capital requirements (EIOPA, 2014). Part of a shock

is absorbed by deferred taxes, as such anomalies mitigate DTL’s or create additional carry

forward when the net DTA position is positive. Basically, insurers transfer part of the loss to

the tax authority, as it reduces future taxable income. The Solvency II guidelines take this

loss absorbing capacity of deferred taxes (LAC DT) into account by subtracting this from

the Solvency capital requirements. Hence, when taking LAC DT into account, the Solvency

ratio follows from

Solvency ratio =
Eligible own funds

Solvency capital requirements− LAC DT
. (9.1)

Suppose that LAC DT is 25% of the Solvency capital requirements, then incorporating LAC

DT can increase the Solvency ratio from 100% to 133%. By definition, LAC DT is the dif-

ference in net DTA position post and ex-ante shock, i.e. LAC DT = post shock net DTA−

ex-ante shock net DTA. The maximum LAC DT is equal to the tax rate multiplied by

the magnitude of the shock, but in reality these values are often lower since insurers can-

not substantiate enough future profits to prove that the deferred tax asset will be settled

completely.

Example 9.2. Suppose A0 = 100, CF1 = 10 and SCR = 40, i.e. the insurer loses maximally

40 following a shock that is bound to occur once every 200 years. The loss of 40 immediately

raises carry forward to CF1 = 50. If the insurance company can substantiate enough future

profits to prove that the additional carry forward will be settled completely, then LAC DT =
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τ(50 − 10) = τ · 40, which is the entire shock loss times the corporate tax rate. If the

insurance company expects to settle only 20 of the shock loss of 40 (because future profits

are not sufficient), then LAC DT = τ(30− 10) = τ · 20.

9.1 Market consistent approach

We use a data set provided by EIOPA, which contains a list of the largest European insurers,

together with a detailed number of variables needed to calculate LAC DT and the Solvency

ratio.14 We briefly outline all observables included in the data set, which are needed for our

computations:

• Eligible own funds (EOF): This is the sum of Tier I capital, the eligible Tier II and

III capital, which are subject to quantitative restrictions as outlined in the delegated

acts of Article 98 in the Solvency II directive. The eligible own funds appear in the

numerator of the Solvency ratio in (9.1).

• Assets: This is the sum of all balance sheet items and will be used as A0, for the input

of our valuation approach.

• Liabilities: These are the technical provisions, which by definition include all insur-

ance obligations, policyholder commitments and other beneficiaries. The technical

provisions enter our model as D (face value of debt), which is needed for the determi-

nation of DTA’s/DTL’s for levered firms.

• Duration liabilities: This is the average duration of all outstanding debt. We round

the average duration to the nearest whole number T and use this to simulate the

T -period model.

• Forward rate: This is the future yield on a bond, calculated by interpolating the curve

constructed from swap rates. Forward rates beyond 20 years are no longer calculated

14These data are secret, and we refrain from discussing them in detail.
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market consistent by EIOPA, since the swap rate market is considered illiquid beyond

this point. This rate enters the model as input for the variable rforward,T , where T

stands for the T -period model.

• net DTA: This is the aggregated deferred tax position on the balance sheet. Negative

quantities denote DTL’s (= LTD1) , whereas positive quantities denote DTA’s (=

CF1). For the simulation, we assume that a positive net DTA comes from carry

forward, as there are no accounting values attached to carry back.

• Solvency capital requirements (SCR): This variable appears in the denominator

of the Solvency ratio in (9.1) and is calibrated using a 99.5% VaR of the normal

distribution with mean µ = 0 and variance σ2.

• LAC DT: This is the Solvency II LAC DT. The variable is used to compare our

computations with those of EIOPA.

• Tax rate: This is the applicable (corporate) tax rate τ , which is country specific. The

tax rate for each member state of the European Union is shown in the first column of

Table 2.

• Dummy variable carry back: This binary variable indicates whether carry back is

allowed in each respective country, which is shown in the second column of Table 2.

• Duration carry forward: This concerns the number of years that losses can be

carried forward in each member state of the European Union (see third column of

Table 2).

To make the data amenable to our computations, we set all negative duration liabilities

to one and put a cap of 30 years on it. The model is fully operational once we have the

volatility of the assets σ and the coupon payment C. Since the SCR is the 99.5% VaR of the

normal distribution with mean zero and variance σ2, we have SCR = σ̂ · xα, where xα is the

quantile of a standard normal distribution with tail level α. In our case α = 0.995, so that

49



xα = Φ−1(0.995) = 2.58. The SCR are provided in the data sheet, hence we solve for the

volatility to obtain σ̂ = SCR/xα. This, however, renders the absolute volatility depending

on the unit of measurement. The simulation of the geometric Brownian motion requires a

relative volatility. Therefore, we rescale by A0 to obtain the relative volatility of the assets,

which is used for subsequent valuation inferences

σ̂ =
SCR

xαA0

.

The total number of insurance companies taken into consideration is 2851. The coupon is

determined exogenously. Since no data are available on the risk premium of debt for each

insurer, we assume that liabilities are risk free. In particular, this means that C = Ccf =

CL = (exp(rforward,T ) − 1) · D. This assumption finds partial justification by the fact that

European countries are inclined to bailout systemically important insurers when bankruptcy

is imminent. Most insurance companies considered in our sample belong to this class. How-

ever, historical evidence suggests that countries do not always intervene when insurers are

close to default, which is best illustrated by the bankruptcy of the Equitable Life Assurance

in the UK (O’Brien, 2006). The risk-free debt assumption forces K = 0, so that bankruptcy

prior to maturity is excluded. Finally, since no data are available for bankruptcy cost, we

enforce them to be zero, i.e. α = 0.

We now outline how to implement these data in our simulation approach. First, a simu-

lation before shock is carried out to (re-)calculate the net DTA before shock in a market

consistent manner. We simulate the asset paths of an insurer with a DTL according to the

more realistic case (ii).

1. In case the insurer has a DTA (coming from carry forward)

(a) Simulate asset paths of (hypothetical) insurer without carry forward, using the

parameter tuple (A0, T, rforward,T , σ̂, D, C, τ). This gives an estimate of the insurers
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value V̂BS.

(b) Simulate asset paths of insurer having carry forward with parameter tuple (A0, T, rforward,T , σ̂, D, C, τ, CF1).

This gives an estimate of the insurers value V̂BS
cf . The DTA value is then computed

by ξ̂BS
cf = V̂BS

cf − V̂BS.

2. In case the insurer has a DTL (coming from temporary differences)

(a) Simulate asset paths of reference insurer without a DTL, using the parameter

tuple (A0, T, rforward,T , σ̂, D, C, τ). Again, this yields the insurers value V̂BS.

(b) Simulate asset paths of insurer having a DTL (using the more realistic case

(ii)) with parameter tuple (A0, T, rforward,T , σ̂, D, C, τ, LTD1). This gives V̂BS
L . The

DTL value follows from ξ̂BS
L = V̂BS

L − V̂BS.

In this way, the net DTA values coming from EIOPA are reassessed in a market consistent

way. Panel (a) of Figure 9 shows the result of these computations in a scatter plot. You can

see that the market consistent approach yields less negative DTL values and less positive

DTA values. In a second step, LAC DT data are re-evaluated using the market consistent

approach. This time, DTA/DTL values are computed after a shock that is bound to occur

every 200 years. The magnitude of this shock equals the SCR and is calculated by internal

models of EIOPA. The insurer instantly creates loss carry forward equal to the SCR after

such a shock occurs. This means that the asset value goes down by SCR, but the net DTA

goes up by SCR. The post-shock net DTA value is calculated using a simulation after

shock

1. In case the insurer has a DTA

(a) Simulate asset paths of reference insurer without carry forward, this time using

the post-shock asset value A0 → A0 − SCR. This gives the new estimate V̂BS.

(b) Simulate asset paths of insurer, which now has carry forward equal to CF1 →

CF1+SCR and starting value of the assets A0 → A0−SCR. This renders the firm
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value V̂ BS
cf . The post-shock DTA value is calculated by ξ̂cf,post-shock = V̂BS

cf − V̂BS.

2. In case the insurer has a DTL and the shock SCR is less than LTD1 (this condition

means that the insurer still has a DTL post-shock)

(a) Simulate asset paths of reference insurer without a DTL, using the new asset

value A0 → A0 − SCR. This gives the new estimate V̂BS.

(b) Simulate asset paths of the insurer having a post-shock DTL equaling LTD1 →

LTD1 − SCR and asset value A0 → A0 − SCR. The corresponding firm value is

equal to V̂BS
L . As a result, the new DTL value equals ξ̂L,post-shock = V̂BS

L − V̂BS.

3. In case the insurer has a DTL and the shock is greater than LTD1. Following a shock,

this means that the complete DTL disappeared and additional carry forward is created

in the amount SCR− LTD1.

(a) Simulate asset paths of reference insurer without a DTL, using the starting value

of the assets A0 → A0 − SCR. This gives the estimate V̂BS.

(b) Simulate asset paths of insurer, where the DTL has disappeared and carry forward

is created equal to the amount LTD1 → CF1 = SCR − LTD1 and starting

value of the assets A0 → A0 − SCR. In this case, the DTA value is given by

ξ̂L,post-shock = V̂BS
cf − V̂BS.

In this way, we compute the net DTA values ex-ante and post shock in a market consistent

manner. By definition, the market consistent LAC DT (LAC DT∗) follows from

LAC DT∗ ≜


ξ̂BS
cf,post-shock − ξ̂BS

cf , if net DTA > 0

ξ̂BS
L,post-shock − ξ̂BS

L , if net DTA < 0.

(9.3)

The second case depends on the condition LTD1 ≶ SCR. The LAC DT values obtained

in this way are shown in panel (b) of Figure 9. The market consistent approach renders
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smaller LAC DT values on average in comparison to those of EIOPA. We observe that the

majority of scatter points are below the 45◦ line, which indicates that the market consistent

approach renders lower LAC DT values. However, there are also points above the 45◦ line.

This is possible, since in case of a DTA, the pre-and post shock values move down when cal-

culated market consistently and this can result in a higher difference compared to EIOPA’s

calculations. The opposite effects hold for DTL’s. It is perfectly possible to obtain negative

LAC DT values in the market consistent approach, since the loss of potential arising from a

shock can be so severe that the additional carry forward doesn’t weigh up against the loss

of potential. This is not possible in EIOPA’s approach.

In a second step, the Solvency II ratios are reassessed using the market consistent inter-

pretation of deferred taxes. The Solvency ratios computed by EIOPA follow from (9.1). The

market consistent Solvency ratios are calculated according to

Solvency ratio∗ =
Eligible own funds∗

Solvency capital requirements− LAC DT∗ . (9.4)

In this formula, LAC DT∗ is given by (9.3). The new Eligible own funds (Eligible own funds∗)

are given by

Eligible own funds∗ = Eligible own funds

−min
(
max(net DTA, 0), 0.15 · (SCR− LAC DT)

)
−min(net DTA, 0)

+ min
(
max(net DTA∗, 0), 0.15 · (SCR− LAC DT∗)

)
+min(net DTA∗, 0).

The Eligible own funds must be adjusted since the net DTA variable (before shock) is

included in the Eligible own funds calculated by EIOPA. For prudential reasons, the max-
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imum DTA included in the EOF is 15% of the SCR − LAC DT. There is no cap on the

DTL values, since they mitigate the EOF. Whence, the market consistent Eligible own funds

(Eligible own funds∗) are obtained by removing the net DTA from EIOPA and adding the

market consistent net DTA∗ before shock, which are obtained by the simulation before

shock. The results of our computations are summarized in the scatter plots of Figure 10.

Panel (a) reflects the impact when the insurer has a DTL, whereas panel (b) shows the

result for insurers with a DTA. In both cases, the impact is moderate. In fact, a simple

regression of the form

Solvency ratio∗ = β · Solvency ratio EIOPA + ε,

renders an OLS estimate β̂ not significantly different from one based on a t-test. Another t-

test on the mean of the Solvency II ratios yields that both sample means are not significantly

different.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

net DTA EIOPA 107

-3

-2

-1

0

1

2

3

n
e
t 
D

T
A

 m
a
rk

e
t 
c
o
n
s
is

te
n
t

106

45 degree line

(a) Estimated net DTA

0 0.5 1 1.5 2 2.5 3 3.5

108

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
108

45 degree line

(b) Estimated LAC DT .

Figure 9: The figure shows estimates of net DTA (left panel) and LAC DT (right panel) in a
market consistent framework vs. those obtained by EIOPA. In the right panel, calculations
by EIOPA are on the x-axis and market consistent calculations are on the y-axis.
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(a) Solvency ratio when net DTA is negative.
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(b) Solvency ratio when net DTA is positive.

Figure 10: Scatter plot of market consistent estimates of Solvency ratio vs. Solvency ratio
calculated by EIOPA when net DTA is negative and positive.

Table 1: Forward rates T -periods from now, expressed in percentages (%).

T 1 2 3 4 5 6 7 8 9 10
rforward,T -0.30 -0.22 -0.10 0.13 0.37 0.67 0.96 1.22 1.43 1.57

T 11 12 13 14 15 16 17 18 19 20
rforward,T 1.68 1.74 1.82 1.78 1.66 1.52 1.44 1.51 1.64 1.88
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9.2 Implication for policymakers

Even though the overall impact of the market consistent approach is relatively moderate, it

can have major repercussions for individual insurers. Indeed, we find that 29 more insurance

copmanies are not well capitalized to withstand an anomalous shock. For these companies,

one could impose recapitalization or de-risk measures or both. Recapitalization and de-

risking have different objectives. Recapitalization is aimed to increase the EOF, whereas

de-risking is employed with the intent to reduce σ̂ by selling risky portfolios. Hence, de-

risking leads to a decrease in the SCR, which is positively dependent on σ̂. Both measures,

or a combination of the two, will lead to an increase in the Solvency II ratio.

The influence of recapitalization in the market consistent framework will roughly be

similar to EIOPA’s projections. However, the influence of de-risking in the market consistent

approach is more subtle. Namely, a change in σ̂ influences the DTA/DTL value (EIOPA

does not take this effect into account). The DTA/DTL value can either increase or decrease,

depending on the relation between A0, CF1 and rforward,T . In the 1-period model, this can be

proved by a careful inspection of the call option vega (= ∂σC
BS). Simulation in the T -period

model for T ≥ 2 renders a similar conclusion, namely that the DTA/DTL value can move up

or down following a decrease in σ̂. The transition in σ̂ with the resulting change in DTA/DTL

value affects the market consistent EOF∗ and LAC DT∗. Hence, it can potentially happen

that the Solvency II ratio goes down after de-risking. However, in most reasonable scenarios

this in unlikely to occur since the DTA/DTL represent only a small fraction of the SCR.

Nevertheless, it is important to be aware of these dynamics, as the effect of de-risking may

not lead to the projected outcome.

10 Conclusion

We propose a market consistent valuation of deferred taxes based on the option interpretation

of tax payments. This leads us to express DTA/DTL values as the difference between
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Black-Scholes call option formulas over a one year time horizon. These formulas offer clear

insight in the contingent nature of deferred taxes and avoid the necessity of subjective profit

forecasts that are needed for extant accounting valuation techniques. Moreover, the market

consistent model acknowledges value creation due to loss carryback, which is not recognized

by applicable accounting standards.

Over multiple time periods, valuation results for deferred taxes are obtained by simu-

lation, since path dependency eschews the tractability of analytical formulæ. The option

interpretation is no longer exact, but the shape of the pricing formulas for different parame-

ter values bears strong resemblance to the one-period model. In this case, the valuation also

depends on the settlement term of carry forward/back and whether carry back is allowed or

not. Extending the T -period model by an extra year negatively influences DTA value, since

an insurer with the initial tax advantage is expected to pay more taxes after the DTA has

been settled, compared to a reference insurer that does not have the tax benefit.

Moreover, we make a clear distinction between levered and unlevered firms. Coupon

payments resulting from debt financing mitigates taxable income, thereby negatively influ-

encing carry forward values, but igniting a positive effect on carry back value. Leverage also

reduces tax liabilities (in absolute terms) arising from temporary differences. The option

interpretation of deferred taxes can also be applied to tax shield valuations, which leads us

to an alternative version of the Modigliani and Miller (1963) theorem, essentially containing

the latter as a special case.

Lastly, the model is flexible enough to cover a wide range of practical applications. The

loss absorbing capacity of deferred taxes of European insurance companies is reassessed using

the market consistent approach. Hereby, we find that the loss absorbing capacity is less than

anticipated, but the overall effect is relatively moderate. In conclusion, we offer an omnibus

framework that offers clear insight in the contingent nature of deferred taxes relevant to

virtually all firms with deferred taxes on the balance sheet.
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A Proofs

This section contains proofs of the results in the main paper.

A.1 No deferred taxes

Proof of Proposition 8.5. A firm without deferred taxes gives rise to the following debt value
at time zero

D0 = e−r(D + C)− e−rEQ((D + C − [A1 − τ(A1 − A0 − γC)+])+).

To evaluate this expression, we assume that C is fixed. Introduce θ1 as the solution to
A1 = A0 + γC (point from which the firm pays taxes). Write A1 = A0 exp(r − σ2/2 + σX),
where X ∼ N(0, 1). The analytical solution for θ1 follows from

A0 exp(r − σ2/2 + σθ1) = A0 + γC =⇒

θ1 =
1

σ
[log

(
A0 + γC

A0

)
− r + σ2/2].

Let θ2 be the solution to D + C = A1 − τ(A1 − A0 − γC). Rearranging leads to

(1− τ)A1 = D + C − τ(A0 + γC) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + C − τ(A0 + γC) =⇒

θ2 =
1

σ
[log

(
D + C − τ(A0 + γC)

(1− τ)A0

)
− r + σ2/2].

Finally, θ3 is defined to be the solution to D + C = A1. This gives

A0 exp(r − σ2/2 + σθ3) = D + C =⇒

θ3 =
1

σ
[log

(
D + C
A0

)
− r + σ2/2].

We now distinguish the following two cases

(i) D + C ≤ A0 + γC.

(ii) D + C > A0 + γC.
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In case (i), the expectation equals

e−rEQ((D + C − [A1 − τ(A1 − A0 − γC)+])+)

= e−r

∫ θ3

−∞
D + C − A1dQ

= e−r

∫ θ3

−∞
(D + C − A0e

r−σ2/2+σx)φ(x)dx

= e−r(D + C)Φ(θ3)− A0Φ(θ3 − σ).

Case (ii) yields

e−rEQ((D + C − [A1 − τ(A1 − A0 − γC)+])+)

= e−r

∫ θ1

−∞
(D + C − A1)dQ

+ e−r

∫ θ2

θ1

(D + C − A1 + τ(A1 − A0 − γC))dQ

= e−r(D + C)Φ(θ2)− A0Φ(θ2 − σ)

+ τA0[Φ(θ2 − σ)− Φ(θ1 − σ)]− e−rτ(A0 + γC)[Φ(θ2)− Φ(θ1)].

A.2 Carry forward

Proof of Proposition 8.6. For a company with carry forward, debt at time zero equals

D0 = (D + Ccf)− e−rEQ((D + Ccf − [A1 − τ(A1 − A0 − CF1 − γCcf)+])+).

To compute the expectation explicitly, we proceed as in the previous section. Let θ1 be the
solution to A1 = A0 + CF1 + γCcf (moment from which firm pays taxes). In particular

A0 exp(r − σ2/2 + σθ1) = A0 + CF1 + γCcf =⇒

θ1 =
1

σ
[log

(
A0 + CF1 + γCcf

A0

)
− r + σ2/2].

In addition θ2 is the solution to D+Ccf = A1− τ(A1−A0−CF1−γCcf). Rearranging terms
yields

(1− τ)A0 = D + Ccf − τ(A0 + CF1 + γCcf) =⇒

θ2 =
1

σ
[log

(
D + Ccf − τ(A0 + CF1 + γCcf)

(1− τ)A0

)
− r + σ2/2].
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Finally, θ3 is the solution to D + Ccf = A1.

A0 exp(r − σ2/2 + σθ3) = D + Ccf =⇒

θ3 =
1

σ
[log

(
D + Ccf

A0

)
− r + σ2/2].

This time we distinguish between

(i) D + Ccf ≤ A0 + CF1 + γCcf.

(ii) D + Ccf > A0 + CF1 + γCcf.

Case (i) renders the following solution to the expectation

e−rEQ((D + Ccf − [A1 − τ(A1 − A0 − CF1 − γCcf)+])+)

= e−r

∫ θ3

−∞
D + Ccf − A1dQ

= e−r(D + Ccf)Φ(θ3)− A0Φ(θ3 − σ).

Case (ii) yields

e−rEQ((D + Ccf − [A1 − τ(A1 − A0 − CF1 − γCcf)+])+)

= e−r

∫ θ1

−∞
(D + Ccf − A1)dQ

+ e−r

∫ θ2

θ1

(D + Ccf − A1 + τ(A1 − A0 − CF1 − γCcf))dQ

= e−r(D + Ccf)Φ(θ2)− A0Φ(θ2 − σ)

+ τA0[Φ(θ2 − σ)− Φ(θ1 − σ)]− e−rτ(A0 + CF1 + γCcf)[Φ(θ2)− Φ(θ1)].

A.3 Carry back

Proof of Proposition 8.11. We know that debt at time zero is given by

D0 = e−r(D+ Ccb)− e−rEQ((D+ Ccb− [A1+ τCB1− τ(A1−A0+CB1− γCcb)+])+). (A.1)

Let us denote the solution to A1 = A0 − CB1 + γCcb by θ1.

A0 exp(r − σ2/2 + σθ1) = A0 − CB1 + γCcb =⇒

θ1 =
1

σ
[log

(
A0 − CB1 + γCcb

A0

)
− r + σ2/2].
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Also, set θ2 to be the solution toD+Ccb = A1+τCB1−τ(A1−A0+CB1−γCcb). Rearranging
leads to

(1− τ)A1 = D + Ccb − τ(A0 + γCcb) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + Ccb − τ(A0 + γCcb) =⇒

θ2 =
1

σ
[log

(
D + Ccb − τ(A0 + γCcb)

(1− τ)A0

)
− r + σ2/2].

Finally, define θ3 to be the solution to D + Ccb = A1 + τCB1, which gives

A0 exp(r − σ2/2 + σθ3) = D + Ccb − τCB1 =⇒

θ3 =
1

σ
[log

(
D + Ccb − τCB1

A0

)
− r + σ2/2].

Distinguish the following cases

(i) D + Ccb ≤ A0 − CB1 + γCcb.

(ii) D + Ccb > A0 − CB1 + γCcb.

In case (i), the expectation in (A.1) is easily evaluated, as the firm can only go bankrupt if
A1 ≤ A0 + CB1 − γCcb, which means debt is so low compared to A0 that if bankruptcy is
triggered, a firm can reclaim the complete carry back. The expectation then follows from

e−rEQ((D + Ccb − [A1 + τCB1 − τ(A1 − A0 + CB1 − γCcb)+])+)

= e−r

∫ θ3

−∞
D + Ccb − A1 − τCB1dQ

= e−r

∫ θ3

−∞
(D + Ccb − A0e

r−σ2/2+σx − τCB1)φ(x)dx

= e−r(D + Ccb − τCB1)Φ(θ3)− A0Φ(θ3 − σ).

In case (ii), bankruptcy is triggered already when a firm can only reclaim part of the carry
back from the tax authority. In this case the expectation in (A.1) is found by splitting the
integral

e−rEQ((D + Ccb − [A1 + τCB1 − τ(A1 − A0 + CB1 − γCcb)+])+)

= e−r

∫ θ1

−∞
D + Ccb − A1 − τCB1dQ

+ e−r

∫ θ2

θ1

D + Ccb − A1 − τCB1 + τ(A1 − A0 + CB1 − γCcb)dQ

= e−r(D + Ccb − τCB1)Φ(θ2)− A0Φ(θ2 − σ) + e−rτ

∫ θ2

θ1

(A1 − A0 + CB1 − γCcb)dQ

= e−r(D + Ccb − τCB1)Φ(θ2)− A0Φ(θ2 − σ)

+ e−rτ(CB1 − A0 − γCcb)[Φ(θ2)− Φ(θ1)] + τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].
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A.4 DTL

Proof of Proposition 8.14. The DTL increases the probability of bankruptcy and thus influ-
ences coupon payments. To see this, we write

D0 = e−r(D + CL)− e−rEQ((D + CL − [A1 − τ(A1 − A0 + LTD1 − γCL)+])+). (A.2)

Now we define θ1 to be the solution to A1 = A0 −LTD1 + γCL (moment from which levered
firm with DTL pays taxes). Solving gives

A0 exp(r − σ2/2 + σθ1) = A0 − LTD1 + γCL =⇒

θ1 =
1

σ
[log

(
A0 − LTD1 + γCL

A0

)
− r + σ2/2].

Similarly, θ2 is the solution to D + CL = A1 − τ(A1 −A0 + LTD1 − γCL). Rearranging leads
to

(1− τ)A1 = D + CL − τ(A0 − LTD1 + γCL) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + CL − τ(A0 − LTD1 + γCL) =⇒

θ2 =
1

σ
[log

(
D + CL − τ(A0 − LTD1 + γCL)

(1− τ)A0

)
− r + σ2/2].

Finally, θ3 is the solution to D + CL = A1. Solving renders

A0 exp(r − σ2/2 + σθ3) = D + CL =⇒

θ3 =
1

σ
[log

(
D + CL
A0

)
− r + σ2/2].

The expectation in (A.2) follows by distinguishing two cases

(i) D + CL ≤ A0 − LTD1 + γCL.

(ii) D + CL > A0 − LTD1 + γCL.

Case (i) renders the solution

e−rEQ((D + CL − [A1 − τ(A1 − A0 + LTD1 − γCL)+])+)

= e−r

∫ θ3

−∞
(D + CL − A1)dQ

= e−r(D + CL)Φ(θ3)− A0Φ(θ3 − σ).
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In case (ii), we have

e−rEQ((D + CL − [A1 − τ(A1 − A0 + LTD1 − γCL)+])+)

= e−r

∫ θ1

−∞
D + CL − A1dQ

+ e−r

∫ θ2

θ1

D + CL − A1 + τ(A1 − A0 + LTD1 − γCL)dQ

= e−r(D + CL)Φ(θ2)− A0Φ(θ2 − σ)

+ e−rτ(LTD1 − A0 − γCL)[Φ(θ2)− Φ(θ1)] + τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

B Tax Regime Table
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Table 2: Tax regimes for member states of the European Union.

Tax rate Carry back Carry forward

Duration Deductible

Austria 0.25 no ∞ 0.75
Belgium 0.34 no ∞ 1.00
Bulgaria 0.10 no 5 1.00
Croatia 0.20 no 5 1.00
Cyprus 0.13 no 5 1.00
Czech Republic 0.19 no 5 1.00
Denmark 0.22 no ∞ 0.60
Estonia 0.25 no NA NA
Finland 0.20 no 10 1.00
France 0.34 no ∞ 0.50
Germany 0.30 no ∞ 0.60
Greece 0.29 no 5 1.00
Hungary 0.19 no 5 0.50
Ireland 0.13 yes ∞ 1.00
Italy 0.24 no ∞ 0.80
Latvia 0.15 no ∞ 1.00
Liechtenstein 0.13 no ∞ 1.00
Lithuania 0.15 no ∞ 0.70
Luxembourg 0.27 no ∞ 1.00
Malta 0.35 no ∞ 1.00
Netherlands 0.25 yes 9 1.00
Norway 0.25 no ∞ 1.00
Poland 0.19 no 5 0.50
Portugal 0.30 no 5 0.70
Romania 0.16 no 7 1.00
Slovakia 0.22 no 4 1.00
Slovenia 0.19 no ∞ 0.50
Spain 0.30 no ∞ 1.00
Sweden 0.22 no ∞ 1.00
United Kingdom 0.20 yes ∞ 1.00

Note: Tax rate denotes the corporate tax rate in each respective country; Carry
back denotes whether carry back is allowed or not. The settlement term of carry
back is only one year when allowed; Carry forward duration concerns the number
of years that losses can be carried forward (“∞” means there is no time limit);
Carry forward deductible gives the fraction of carry forward that can be used to
mitigate tax expenses next year.

65


	Introduction
	Literature Review
	Four different types of deferred taxes
	DTA from carry forward
	DTA from carry back
	DTA from temporary differences
	DTL from temporary differences

	Two-period model unlevered firms
	Carry forward
	Carry back
	DTL

	Extension to include levered firms
	Carry forward
	Carry back
	DTL

	Market consistent valuation of deferred taxes
	Carry forward
	Carry back
	DTA from temporary differences
	DTL from temporary differences
	Aggregate DTA value

	Differences with current accounting and valuation practices
	GAAP and IAS12

	Valuation of deferred taxes including levered firms
	Valuation of debt
	Carry forward
	Carry back
	DTL
	Valuation interest tax shield

	Loss absorbing capacity of deferred taxes (LAC DT) for European insurers
	Market consistent approach
	Implication for policymakers

	Conclusion
	Proofs
	No deferred taxes
	Carry forward
	Carry back
	DTL

	Tax Regime Table

