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Abstract

How should financial institutions hedge their balance sheets against in-

terest rate risk when they have long-term assets and liabilities? Using the

perspective of functional and numerical analysis, we propose a model-free

bond portfolio selection method that generalizes classical immunization and

accommodates arbitrary liability structure, portfolio constraints, and per-

turbations in interest rates. We prove the generic existence of an immunizing

portfolio that maximizes the worst-case equity with a tight error estimate

and provide a solution algorithm. Numerical evaluations using empirical

and simulated yield curves from a no-arbitrage term structure model sup-

port the feasibility and accuracy of our approach relative to existing meth-

ods.

Keywords: immunization, interest rate risk, maxmin, model-free, ro-

bustness.

JEL codes: C65, G11, G12, G22.

1 Introduction

Many financial institutions have long-term commitments. For instance, insurance

companies promise annuities or life insurance payments to customers; (defined-

benefit) pension plans promise predetermined pension payments to retirees; or

commercial banks may make long-term loans at fixed interest rates and thus com-

mit to receiving certain future cash flows in exchange of funding the projects

with short-term deposits. In such circumstances, it becomes crucial for financial
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institutions to effectively manage their assets and liabilities to hedge against in-

terest rate risk. The recent gilt market crisis in the UK showcases the importance

of liability-driven investing strategies and the risk associated with interest rate

changes, which eventually led to an £65 billion emergency intervention by the UK

central bank.1 Even more recently, Silicon Valley Bank and First Republic Bank

collapsed as a result of increased interest rates and the subsequent decline in value

of long-term bonds and mortgages.2,3

If zero-coupon bonds of all maturities were to exist, any deterministic future

cash flow can be replicated by these bonds (which is called a “dedication” strat-

egy), and the problem becomes trivial, at least theoretically. However, in practice

dedication is infeasible due to market incompleteness: there are fewer bonds avail-

able for trade than the number of payment dates of the liability, or the long-term

liability could have a longer maturity than the government bond with longest

maturity. Thus, in general, one can only hope to hedge against interest rate

risk approximately. The question of fundamental practical importance is how to

achieve this goal given the set of bonds available for trade.

In this article, we propose a new method to construct a hedging portfolio that

maximizes equity (asset minus liability) under the most adversarial interest rate

shock. This so-called maxmin problem originates in the work of Fisher and Weil

(1971), who show that a portfolio that matches value and duration (weighted aver-

age time to payment) is maxmin against parallel shocks to the forward rate. In this

paper and subsequent work, the liability is assumed to be a zero-coupon bond and

no-shortsale constraints are imposed (or implicitly assumed not to bind). These

restrictions are undesirable in practice because most liabilities pay out over time

and shortsales are essential when liabilities have very long maturities (like pen-

sions). Furthermore, there is no systematic analysis of the existence, uniqueness,

and optimality of the solution method as well as explicit or tight error estimates.

Our approach overcomes these shortcomings using techniques from functional

and numerical analysis. First we argue that the most general formulation of the

maxmin problem is intractable because the objective function is not convex and the

space has infinite dimension. To make the problem manageable, we approximate

the objective function using the Gateaux differential with respect to basis functions

that approximate yield curve shifts. This allows us to recast the maxmin problem

1https://www.bankofengland.co.uk/speech/2022/november/

sarah-breeden-speech-at-isda-aimi-boe-on-nbfi-and-leverage
2https://www.ft.com/content/f9a3adce-1559-4f66-b172-cd45a9fa09d6
3https://www.economist.com/finance-and-economics/2023/05/03/

what-the-first-republic-deal-means-for-americas-banks

2

https://www.bankofengland.co.uk/speech/2022/november/sarah-breeden-speech-at-isda-aimi-boe-on-nbfi-and-leverage
https://www.bankofengland.co.uk/speech/2022/november/sarah-breeden-speech-at-isda-aimi-boe-on-nbfi-and-leverage
https://www.ft.com/content/f9a3adce-1559-4f66-b172-cd45a9fa09d6
https://www.economist.com/finance-and-economics/2023/05/03/what-the-first-republic-deal-means-for-americas-banks
https://www.economist.com/finance-and-economics/2023/05/03/what-the-first-republic-deal-means-for-americas-banks


as a saddle point (minmax) problem where the inner maximization is a large linear

programming problem and the outer minimization is a small convex programming

problem, which is computationally tractable. We prove that a robust immunizing

portfolio generically exists (Proposition 3.1) and its solution achieves the smallest

error order and maximizes the worst-case equity (Theorem 3.3). This maxmin

result is significantly different from the existing literature because both the liability

structure and bond portfolio constraint are arbitrary and the guaranteed equity

bound is tight. When the majority of forward rate changes are captured by a small

number of principal components such as the level of the overall interest rate, we

improve this guaranteed equity bound by incorporating moment matching (e.g.,

duration matching) in the portfolio constraint (Theorem 3.5). We also propose

particular basis functions (transformation of Chebyshev polynomials) that are

motivated by approximation theory.

An alternative approach to asset-liability management, referred to as classical

immunization (see, e.g., Redington (1952)), involves matching the interest rate

sensitivity of assets and liabilities. A common measure of interest rate sensitivity

is duration, and matching the duration of assets and liabilities makes equity insen-

sitive to small interest rate changes. Although classical immunization is intuitive

and elegant, by assumption it only allows for small parallel shifts in the yield curve.

Furthermore, when there are multiple bonds, it is not obvious how to construct

the portfolio because there are infinitely many linear combinations that achieve

the same duration. Extensions such as high-order duration matching (which are

designed to allow non-infinitesimal or non-parallel shifts in the yield curve) result

in unstable portfolio weights and extreme leverage, leading to poor performance

(Mantilla-Garcia et al., 2022). Our approach contains classical immunization and

its extensions as a special case by choosing a monomial basis and imposing only

a value matching constraint. In simulation, we show that our preferred robust

immunization method that combines moment matching and a Chebyshev poly-

nomial basis does not suffer from extreme leverage and significantly outperforms

existing methods.

The simulation exercise uses historical yield curve data to evaluate the change

in equity resulting from instantaneous yield curve shocks. A hedging method’s

success is measured by its ability to minimize these equity changes. Indeed, we

find that robust immunization generates approximation errors that are an order

of magnitude smaller than the existing approaches and has lower downside risk,

in line with our maxmin result. This numerical experiment has a static flavor,

since we only consider one-time perturbations. In a separate simulation based on
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a no-arbitrage term structure model, we consider the dynamic properties of robust

immunization, allowing for portfolio rebalancing every three months. Over a 10-

year period of rebalancing, robust immunization achieves a funding ratio (assets

to liabilities) of 99% in the 1% worst-case scenario and consistently maintains

a funding ratio higher than that of existing methods. Because our approach is

model-free, we expect our proposed method to be useful for practitioners in asset-

liability management.4

1.1 Related literature

When inputs to a problem such as beliefs, information, or shocks are complicated,

it is common to optimize against the worst case scenario, i.e., solve the maxmin

problem (Gilboa and Schmeidler, 1989; Bergemann and Morris, 2005; Du, 2018;

Brooks and Du, 2021). In the context of asset-liability management, Redington

(1952, p. 290) considers the Taylor expansion of assets minus liabilities in response

to a small change in the (constant) interest rate and anticipates the importance

of convexity to guarantee the portfolio value. Fisher and Weil (1971) formalize

this idea and show that if the liability is a zero-coupon bond and a bond portfolio

matches the value and duration, then the portfolio value can never fall below

liabilities under any parallel shift to the forward rate. Bierwag and Khang (1979)

show that when the investor has a fixed budget to invest in bonds, then classical

immunization (duration matching) is maxmin in the sense that it maximizes the

worst possible rate of return under any parallel shift to the forward rate. Fong

and Vasicek (1984) consider any perturbation to the forward curve such that the

slope of the forward curve is bounded by some constant and derive a lower bound

on the portfolio return over the investment horizon that is proportional to it.

The constant of proportionality is a measure of interest rate risk and is called

“M -squared”. Minimization of M -squared renders a portfolio that minimizes the

likelihood of a deviation from liabilities. Zheng (2007) considers perturbations to

the forward rate that are Lipschitz continuous, derives the maximum deviation of

the bond value, and applies it to a portfolio choice problem.

Several classical books and papers such as Macaulay (1938), Hicks (1939,

pp. 184-188), and Samuelson (1945) discovered that the average time to payment

(“duration”) of a bond captures the interest rate sensitivity of the bond with re-

4This statement is similar to the fact that the Black and Scholes (1973) option pricing model
has been hugely successful precisely because the model requires only a few assumptions, namely
the absence of arbitrage and the stock price following a geometric Brownian motion, and no
assumptions on investor preferences are required.
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spect to parallel shifts in the yield curve. Redington (1952) suggested matching

the duration of the asset and liability (“immunization”) to hedge against interest

rate risk. Chambers et al. (1988), Nawalkha and Lacey (1988) and Prisman and

Shores (1988) use polynomials to approximate the yield curve and discuss immu-

nization using high-order duration measures. Ho (1992) introduced the concept

of “key rate duration”, which is the bond price sensitivity with respect to local

shifts in the yield curve at certain key rates (e.g., 10-year yield). Litterman and

Scheinkman (1991) use principal component analysis (PCA) to identify common

factors that affect bond returns and find that the three factors called level, slope,

and curvature explain a large fraction of the variations in returns. Using these

factors, Willner (1996) defines level, slope, and curvature durations and shows how

they can be used for asset-liability management. See Sydyak (2016) for a review

of this literature. In a recent paper, Onatski and Wang (2021) argue that PCA

based on the yield curve is prone to spurious analysis since bond yields are highly

persistent. As a result, Crump and Gospodinov (2022) show that PCA tends to

favor a much lower dimension of the factor space than the true dimension, which

can lead to large costs in bond portfolio management. We further discuss our

contribution relative to the literature in Section 3.3.

2 Problem statement

2.1 Model setup

Time is continuous and denoted by t ∈ [0, T ], where T > 0 is the planning

horizon. There are finitely many bonds indexed by j = 1, . . . , J , where J ≥ 2.

The cumulative payout of bond j is denoted by the (weakly) increasing function

Fj : [0, T ] → R+. For instance, if bond j is a zero-coupon bond with face value

normalized to 1 and maturity tj, then

Fj(t) =

{
0 if 0 ≤ t < tj,

1 if tj ≤ t ≤ T .
(2.1)

Similarly, if bond j continuously pays out coupons at rate cj and has zero face

value, then Fj(t) = cjt for 0 ≤ t ≤ T .

The fund manager seeks to immunize future cash flows against interest rate

risk by forming a portfolio of bonds j = 1, . . . , J . Let F : [0, T ] → R+ be the

cumulative cash flow to be immunized and y : [0, T ] → R be the yield curve, which
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the fund manager takes as given. The present discounted value of cash flows is

given by the Riemann-Stieltjes integral∫ T

0

e−ty(t) dF (t). (2.2)

Because the expression ty(t) appears elsewhere, it is convenient to introduce the

notation x(t) := ty(t). Note that by the definition of the instantaneous forward

rate, we have

x(t) =

∫ t

0

f(u) du, (2.3)

where f(u) is the instantaneous forward rate at term u. Because x is the integral

of forward rates, we refer to it as the cumulative discount rate. Using x, we can

rewrite the present discounted value of cash flows (2.2) as

P (x) :=

∫ T

0

e−x(t) dF (t), (2.4)

which is a functional of x. The price Pj(x) of bond j can be defined analogously.

The fund manager’s problem is to approximate P (x) using a linear combination

of bonds {Pj(x)}Jj=1 in a way such that the approximation is robust against per-

turbations to the yield curve y (and hence the cumulative discount rate x).

2.2 Problem

We now formulate the fund manager’s problem. Let Z ⊂ RJ and H be the

sets of admissible portfolios and perturbations to the cumulative discount rate,

respectively. We consider the following maxmin problem:

sup
z∈Z

inf
h∈H

[
J∑

j=1

zjPj(x+ h)− P (x+ h)

]
. (2.5)

Here, the objective function
∑J

j=1 zjPj(x + h) − P (x + h) represents the differ-

ence between assets and liabilities, or “equity”. The interpretation of the maxmin

problem (2.5) is as follows. Given the portfolio z ∈ Z, nature chooses the most

adversarial perturbation h ∈ H to minimize equity. The fund manager chooses

the portfolio z that guarantees the highest equity under the worst possible per-

turbation.

6



2.3 Assumptions

The maxmin problem (2.5) is not tractable because we have not yet specified the

admissible sets Z,H and the objective function is nonlinear (not even convex) in

h. We thus impose several assumptions to make progress.

Assumption 1 (Discrete payouts). The bonds and liability pay out on finitely

many dates, whose union is denoted by {tn}Nn=1 ⊂ (0, T ].

Assumption 1 always holds in practice. Under this assumption, each Fj is a

step function with discontinuities at points contained in {tn}Nn=1, and integrals of

the form (2.4) reduce to summations.

Assumption 2 (Portfolio constraint). The set of admissible portfolios Z ⊂ RJ is

nonempty and closed. Furthermore, all z ∈ Z satisfy value matching:

P (x) =
J∑

j=1

zjPj(x). (2.6)

Value matching (2.6) is merely a normalization to make the initial equity (as-

sets minus liabilities) equal to 0. This assumption is common in the immunization

literature (see, for example, Bierwag and Khang (1979)).

We now specify the space of cumulative discount rates and their perturbations.

Let Cr[0, T ] be the vector space of r-times continuously differentiable functions on

[0, T ], with the convention that C0[0, T ] = C[0, T ] denote the space of continuous

functions. We let the space of forward rates be the Banach space of continuous

functions C[0, T ] endowed with the supremum norm denoted by ∥·∥∞.5 Since by

definition the cumulative discount rate is the integral of the forward rate, if f is

continuous, then x : [0, T ] → R defined by (2.3) is continuously differentiable with

x(0) = 0. We define the space of cumulative discount rates by

X =
{
x ∈ C1[0, T ] : x(0) = 0

}
. (2.7)

Lemma A.1 in the Appendix shows that X is a Banach space endowed with the

norm ∥x∥X = supt∈[0,T ] |x′(t)|. The set of admissible perturbations is a subset

H ⊂ X . The next assumption allows us to approximate any element x ∈ X .

Assumption 3. There exists a countable basis {hi}∞i=1 of X such that for each

1 ≤ I ≤ N , the I ×N matrices H = (hi(tn)) and G = (h′
i(tn)) have full row rank.

5As we use several different norms in this paper, we use subscripts to distinguish them. An
example is the ℓp norm on RJ for p = 1, 2, which we denote by ∥·∥p.
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We refer to each hi as a basis function. Assumption 3 says that the basis

functions {hi} and their derivatives {h′
i} are linearly independent when evaluated

on the payout dates. We impose this assumption to avoid portfolio indeterminacy.

In practice, we can always ensure that H and G have full row rank by removing

certain basis functions if necessary. A typical example satisfying Assumption 3 is

to let hi be a polynomial of degree i with hi(0) = 0 (Lemma A.2).

3 Robust asset-liability management

In this section we solve the maxmin problem (2.5) in the limit when the admissible

set of perturbations H shrinks to {0}. In practice, the resulting portfolio solution

is expected to provide a good hedge against the worst-case interest rate shock

when the change in interest rates is small.

3.1 Robust immunization

As the set of cumulative discount rates X forms an infinite-dimensional vector

space, we employ tools from functional analysis to analyze how prices change

in response to perturbations in the discount rate, denoted by h ∈ X . These

perturbations can take various forms, such as a parallel shift, characterized by a

constant function h(t) ≡ c ∈ R, or a linear shift represented by h(t) = ct. We

assess the price change following an arbitrary shift in the cumulative discount rate

by using the Gateaux differential of P (x):6

δP (x;h) := lim
α→0

1

α
(P (x+ αh)− P (x)) = −

∫ T

0

e−x(t)h(t) dF (t). (3.1)

Remark 1. The operator h 7→ δP (x;h) defined by (3.1) is a bounded linear opera-

tor from X to R (Lemma A.3), which is called the Fréchet derivative and denoted

by P ′(x). Thus by definition P ′(x)h = δP (x;h). In broad terms, P ′(x)h quantifies

the first-order impact on price change when the cumulative discount rate curve is

perturbed by h.

Our approach to constructing a maxmin solution is based on assessing the

sensitivity of assets and liabilities to perturbations in specific directions h. Specif-

ically, given the basis functions {hi}Ii=1 and bonds j = 1, . . . , J , we define the

6Note that we can interchange the order of integration and differentiation using the dominated
convergence theorem.
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sensitivity matrix A = (aij) ∈ RI×J , where each element aij represents the sensi-

tivity of bond j (with F = Fj) to a perturbation evaluated at h = hi. The exact

expression for aij is given by

aij := −
P ′
j(x)hi

P (x)
= −δPj(x;hi)

P (x)
=

1

P (x)

∫ T

0

e−x(t)hi(t) dFj(t). (3.2)

Division by P (x) is merely a normalization to make aij dimensionless. Similarly,

we define the sensitivity vector b = (bi) ∈ RI of liabilities by

bi := −P ′(x)hi

P (x)
= −δP (x;hi)

P (x)
=

1

P (x)

∫ T

0

e−x(t)hi(t) dF (t). (3.3)

If h ∈ span {hi}Ii=1, so h =
∑I

i=1 wihi for some w ∈ RI , then under Assumption 2

we obtain

lim
α→0

1

αP (x)

[
J∑

j=1

zjPj(x+ αh)− P (x+ αh)

]
= −⟨w,Az − b⟩ ,

where ⟨·, ·⟩ denotes the inner product. Hence, the change in equity following

an infinitesimal perturbation in the discount rate is governed by the assets and

liabilities’ Fréchet derivative. If the portfolio is chosen such that Az = b, i.e., the

Fréchet derivatives of assets and liabilities are matched, then the worst-case equity

is insensitive to small perturbations in the yield curve. We will use this insight to

construct the maxmin solution in Theorem 3.3. Before doing so, we present several

auxiliary results. In the discussion below, it is convenient to introduce notation

for the value matching constraint, which is always assumed to hold (Assumption

2). Specifically, set h0 ≡ 1 and define a0j using (3.2). Define the 1 × J vector

a0 := (a0j) and the (I + 1)× J matrix and (I + 1)× 1 vector

A+ :=

[
a0

A

]
and b+ :=

[
1

b

]
. (3.4)

In what follows, longer proofs are relegated to Appendix B.

Proposition 3.1 (Minmax). Suppose Assumptions 1–3 hold, I ≥ J − 1, and A+

in (3.4) has full column rank. Define the I ×N matrix G = (h′
i(tn)) and the set

W :=
{
w ∈ RI : G′w ∈ [−1, 1]N

}
. (3.5)

9



Then there exists (z∗, w∗) ∈ Z ×W that achieves the minmax value

VI(Z) := inf
z∈Z

sup
w∈W

⟨w,Az − b⟩ . (3.6)

Furthermore, VI(Z) ≥ 0, and z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+.

The matrix G = (h′
i(tn)) can be thought of as the I×N matrix of perturbations

to forward rates. The set W in (3.5) thus characterizes the span of perturbations

to the forward rate that are bounded in absolute value by one. Proposition 3.1

assumes that A+ in (3.4) has full column rank. If the cumulative payouts of

bonds {Fj} and the basis functions {hi} are linearly independent, the matrix

A+ generically has full column rank and therefore a solution (z, w) ∈ Z ×W to

the minmax problem (3.6) generically exists. Appendix C makes this statement

precise.

The solution z to the minmax problem (3.6) depends on the basis functions

{hi}Ii=1 only through its span and it is immaterial how we parameterize these

functions. Although this result is obvious, we note it as a proposition.

Proposition 3.2 (Basis invariance). Let everything be as in Proposition 3.1 and

Z∗ be the set of solutions z∗ ∈ Z to the minmax problem (3.6). Then VI(Z) and

Z∗ depend on the basis functions {hi}Ii=1 only through its span.

For any bond portfolio z ∈ Z, define the portfolio share θ = (θj) ∈ RJ by

θj := zjPj(x)/P (x). (3.7)

Under Assumption 2, the portfolio share θ satisfies
∑J

j=1 θj = 1. Therefore the

ℓ1 norm ∥θ∥1 =
∑J

j=1 |θj| satisfies ∥θ∥1 = 1 if and only if θj ≥ 0 for all j, and

∥θ∥1 > 1 is equivalent to θj < 0 for some j. Thus ∥θ∥1 can be interpreted as a

measure of leverage, which we refer to as the gross leverage.

To state our main result, we consider the following set of admissible perturba-

tions to the cumulative discount rate for any ∆ > 0:

HI(∆) :=
{
h ∈ span {hi}Ii=1 : (∀n) |h

′(tn)| ≤ ∆
}
. (3.8)

Because h is a perturbation to the cumulative discount rate, which is the integral

of the forward rate, choosing h ∈ HI(∆) amounts to allowing the forward rates to

change by at most ∆ while spanned by the first I basis functions. The following

theorem is our main theoretical result.
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Theorem 3.3 (Robust immunization). Let everything be as in Proposition 3.1

and HI(∆) be as in (3.8). Then the guaranteed equity satisfies

lim
∆↓0

1

∆
sup
z∈Z

inf
h∈HI(∆)

[
J∑

j=1

zjPj(x+ h)− P (x+ h)

]
= −P (x)VI(Z). (3.9)

Letting z∗ ∈ Z be the solution to the minmax problem (3.6) and θ = (θj) ∈ RJ be

the corresponding portfolio share defined by (3.7), then

sup
h∈HI(∆)

∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣ ≤ ∆P (x)

(
VI(Z) +

1

4
∆T 2e∆T (1 + ∥θ∥1)

)
.

(3.10)

Theorem 3.3 has several implications. First, (3.9) shows that, to the first

order, the guaranteed equity is exactly −∆P (x)VI(Z) when forward rates (hence

yields) are perturbed by at most ∆ within the span of the basis functions. The

minmax value VI(Z) has a natural interpretation and is the answer to the following

question: “if forward rates change by at most one percentage point, what is the

largest percentage point decline in the portfolio value?” The maxmin formula (3.9)

provides an exact characterization of the worst-case outcome, and the number

VI(Z) can be solved as the minmax value (3.6).

Second, the error estimate (3.10) shows that the solution z∗ ∈ Z to the minmax

problem (3.6) achieves the lower bound in (3.9), to the first order. In this sense

z∗ is an optimal portfolio, which we refer to as the robust immunizing portfolio.

Clearly, this immunizing portfolio is independent of ∆ > 0 as the minmax problem

(3.6) does not involve ∆. In addition, the minmax value (3.6) satisfies the following

comparative statics.

Proposition 3.4 (Monotonicity of minmax value). Let everything be as in Propo-

sition 3.1. If I < I ′ and Z ⊂ Z ′, then VI(Z) ≤ VI′(Z) and VI(Z) ≥ VI(Z ′).

The result VI(Z) ≤ VI′(Z) is obvious because the more basis functions we

use, the more freedom nature has to select adversarial perturbations. The result

VI(Z) ≥ VI(Z ′) is also obvious because the larger the set of admissible portfolios

is, the more freedom the fund manager has to select portfolios.

3.2 Robust immunization with principal components

So far we have put no structure on the basis functions {hi}Ii=1 beyond Assumption

3. The set of admissible perturbations (3.8) depends only on span {hi}Ii=1 and the
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particular order or parameterization does not matter. However, in practice there

could be some factor structure in the forward rate. For instance, a typical shift

to the forward curve might be decomposed into the sum of a parallel shift and

a nonparallel shift of a smaller size. In this section we formalize this idea and

extend Theorem 3.3 to a setting where the perturbation in a particular direction

(principal component) could be larger.

For any ∆1,∆2 > 0, consider the following admissible set of perturbations:

HI(∆1,∆2)

=
{
h ∈ span {hi}Ii=1 : (∃α)(∀n) |αh

′
1(tn)| ≤ ∆1, |h′(tn)− αh′

1(tn)| ≤ ∆2

}
.

(3.11)

Choosing h ∈ HI(∆1,∆2) amounts to perturbing the forward rate in the direc-

tion spanned by the first component (h′
1) by a magnitude at most ∆1, and then

perturbing in an arbitrary direction spanned by the first I basis functions by a

magnitude at most ∆2. Thus setting ∆1 ≫ ∆2 captures the idea that h1 is the first

principal component. In this setting, we can generalize Theorem 3.3 as follows.

Theorem 3.5 (Robust immunization with principal components). Let everything

be as in Proposition 3.1 and suppose the set

Z1 :=

{
z ∈ Z :

J∑
j=1

a1jzj = b1

}
(3.12)

is nonempty, where a1j and b1 are defined by (3.2) and (3.3) with i = 1. Let

HI(∆1,∆2) be as in (3.11). Then the guaranteed equity satisfies

lim
1

∆2

sup
z∈Z

inf
h∈HI(∆1,∆2)

[
J∑

j=1

zjPj(x+ h)− P (x+ h)

]
= −P (x)VI(Z1), (3.13)

where the limit is taken over ∆1,∆2 → 0, ∆1/∆2 → ∞, and ∆2
1/∆2 → 0. Letting

z∗ ∈ Z1 be the solution to the minmax problem (3.6) with portfolio constraint Z1,

we have

sup
h∈HI(∆1,∆2)

∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣ ≤ ∆2P (x)
(
VI(Z1) +O(∆2 +∆2

1/∆2)
)
.

(3.14)

The value added of Theorem 3.5 relative to Theorem 3.3 can be explained as

12



follows. Comparing to (3.11) to (3.8) and applying the triangle inequality

|h′(t)| ≤ |αh′
1(t)|+ |h′(t)− αh′

1(t)| ,

we obtain HI(∆1,∆2) ⊂ HI(∆1 + ∆2). Therefore to first-order, the maximum

portfolio return loss can be bounded as

∆2VI(Z1)︸ ︷︷ ︸
Theorem 3.5

≤ (∆1 +∆2)VI(Z)︸ ︷︷ ︸
Theorem 3.3

.

Thus if ∆1 ≫ ∆2 in typical situations (see Figure 2), then imposing the constraint

Z1 in (3.12) improves the performance.7

Remark 2. Theorem 3.5 can be further generalized if we allow larger perturbations

spanned by the first few basis functions. For instance, if we use the first two basis

functions, we can defineHI(∆1,∆2,∆3) analogously to (3.11) by incorporating the

constraints |αih
′
i(tn)| ≤ ∆i for i = 1, 2 and |h′(tn)− α1h

′
1(tn)− α2h

′
2(tn)| ≤ ∆3.

The portfolio constraint (3.12) then becomes

Z2 :=

{
z ∈ Z :

J∑
j=1

aijzj = bi for i = 1, 2

}
, (3.15)

and the maxmin formula (3.13) involves VI(Z2).

3.3 Relation to existing literature

In this section we discuss in some detail how Theorem 3.3 is related to the existing

literature. The following corollary shows that when I = J − 1 and there is no

portfolio constraint beyond value matching, the immunizing portfolio can be solved

explicitly.

Corollary 3.6 (Robust immunization with I = J − 1). Let everything be as in

Proposition 3.1 and suppose that the only portfolio constraint is value matching

(2.6), so the set of admissible portfolios is

Z0 :=

{
z ∈ RJ : P (x) =

J∑
j=1

zjPj(x)

}
. (3.16)

7On the other hand, if ∆1 ∼ ∆2, then imposing the constraint Z1 worsens the performance
because VI(Z1) ≥ VI(Z) by Proposition 3.4.
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If I = J − 1 and the square matrix A+ in (3.4) is invertible, then the unique

solution to (3.6) is z∗ = A−1
+ b+, with VI(Z) = 0.

Proof. Immediate from the proof of Proposition 3.1.

Remark 3. The special case of Corollary 3.6 with I = J − 1 = 1 and h1(t) = t

reduces to classical immunization that matches the bond value and duration. To

see this, recall that the duration of the cash flow F is defined by the weighted

average time to payment

D =

∫ T

0
te−ty(t) dF (t)∫ T

0
e−ty(t) dF (t)

.

Using the definition x(t) = ty(t) and (3.1), the duration can be rewritten as

D =

∫ T

0
te−x(t) dF (t)∫ T

0
e−x(t) dF (t)

= −P ′(x)h1

P (x)
= b1,

where h1(t) = t and we have used (3.3). A similar calculation implies that the

duration of the immunizing portfolio is

−
∑J

j=1 zjP
′
j(x)h1∑J

j=1 zjPj(x)
= −

∑J
j=1 zjP

′
j(x)h1

P (x)
=

J∑
j=1

a1jzj

using value matching (2.6) and (3.2). Therefore if z = A−1
+ b+, so A+z = b+, the

duration is matched. By the same argument, setting I = J − 1 and hi(t) = ti

reduces to high-order duration matching (I = J − 1 = 2 is convexity matching).

Remark 4. Proposition 3.4 explains why high-order duration matching (I = J−1,

no portfolio constraint, and hi(t) = ti) does not necessarily have good performance

(Mantilla-Garcia et al., 2022). When I = J − 1, as we increase I, both the

number of basis functions I and the set of admissible portfolios Z expand. Because

increasing I makes VI(Z) larger but expanding Z makes it smaller, the combined

effect could go either way.

In addition to the setting in Corollary 3.6, if the liability pays out on a single

date and the immunizing portfolio does not involve shortsales, we can obtain the

following global result.

Proposition 3.7 (Guaranteed funding). Let everything be as in Corollary 3.6 and

suppose that the liability pays out on a single date. If z∗ = A−1
+ b+ ≥ 0, then for

14



all h ∈ span {hi}Ii=1 we have

J∑
j=1

z∗jPj(x+ h) ≥ P (x+ h). (3.17)

Remark 5. Our maxmin result (Theorems 3.3 and 3.5) is quite different from the

existing literature such as Fisher and Weil (1971) and Bierwag and Khang (1979).

To the best of our knowledge, in this literature it is always assumed that the

liability pays out on a single date and the portfolio does not involve shortsales (z ≥
0) yet this constraint does not bind. Under these assumptions, Proposition 3.7

shows that the immunizing portfolio always funds the liability, which generalizes

the result of Fisher and Weil (1971) (who proved (3.17) for I = J − 1 = 1 and

h1(t) = t). However, this result is quite restrictive because liabilities could be

paid out over time and shortsales are essential when the maturity of the liability

is very long (such as pensions). Our maxmin result (3.9) accommodates arbitrary

liability structures and portfolio constraints.

3.4 Implementation

To implement robust immunization, we need to choose the basis functions {hi}Ii=1.

For each i, it is natural to choose hi such that hi is a polynomial of degree i

with hi(0) = 0, for Assumption 3 then holds (Lemma A.2). By basis invariance

(Proposition 3.2), any choice of such a basis will result in the same immunizing

portfolio.

However, we suggest using Chebyshev polynomials because they enjoy good

approximation properties (Trefethen, 2019, Ch. 2–4). To be more specific, let Tn :

[−1, 1] → R be the n-degree Chebyshev polynomial defined by Tn(cos θ) = cosnθ

and setting x = cos θ. We map [0, T ] to [−1, 1] using t 7→ x = 2t/T −1, and define

gi : [0,∞) → R by

gi(t) = Ti−1(2t/T − 1) (3.18)

so that we can allow any (continuous) perturbations to the forward rate for t ∈
[0, T ]. Then our basis functions for perturbing the cumulative discount rate (the

integral of the forward rate) can be defined by

hi(t) =

∫ t

0

gi(u) du (3.19)

for each i. The following lemma provides explicit formulas for the basis functions
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(3.19).

Lemma 3.8 (Chebyshev basis for forward rate). Let Tn be the n-degree Chebyshev

polynomial defined by Tn(cos θ) = cosnθ and setting x = cos θ. For each i, the

basis function hi in (3.19) can be expressed as

h1(t) = t, (3.20a)

h2(t) =
1

4
T
(
(2t/T − 1)2 − 1

)
, (3.20b)

and for i ≥ 3,

hi(t) =
1

4
T

(
Ti(2t/T − 1)

i
− Ti−2(2t/T − 1)

i− 2
+

2(−1)i

i(i− 2)

)
. (3.20c)

Figure 1a shows the graphs of the first few basis functions (3.20) for T = 50

years. Figure 1b shows the graphs of gi = h′
i in (3.18), which are the rows of the

matrix G in Proposition 3.1.
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(a) Cumulative discount rate.
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Figure 1: Basis functions of robust immunization.

We now describe the algorithm to implement robust immunization in practice.

Although the underlying theory (which heavily relies on functional and numerical

analysis) may not be familiar to practitioners, the implementation only requires

little more than basic linear algebra and linear programming.

Robust Immunization.
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(i) Let t = (t1, . . . , tN) be the 1 × N vector of asset/liability payout dates

and T = tN be the planning horizon. Let y = (y1, . . . , yN) be the 1×N

vector of yields, f = (f1, . . . , fN) be the 1 × N vector of liabilities, and

F = (fjn) be the J ×N matrix of bond payouts.

(ii) Let I ≥ J − 1, define the basis functions by (3.20), evaluate at each

tn, and construct the I ×N matrix of basis functions H = (hi(tn)) and

their derivative G = (h′
i(tn)) = (gi(tn)). Define the 1 × N vector of

zero-coupon bond prices p = exp(−y ⊙ t), where ⊙ denotes entry-wise

multiplication (Hadamard product).

(iii) Define the I × J matrix A, I × 1 vector b, and 1× J vector a0 by

A := (H diag(p)F′)/(pf ′), b := H diag(p)f ′/(pf ′), a0 := pF′/(pf ′),

where diag(p) denotes the diagonal matrix with diagonal entries given

by p. Define the (I + 1)× J matrix A+ and (I + 1)× 1 vector b+ by

A+ :=

[
a0

A

]
and b+ :=

[
1

b

]
.

(iv) If I = J − 1 and there are no portfolio constraints, calculate the immu-

nizing portfolio as z∗ = A−1
+ b+. Otherwise, solve the minmax problem

(3.6).

Note that the inner maximization in (3.6) is a linear programming problem

with I variables and 2N inequality constraints, which is straightforward to solve

numerically even when N is large (a few hundred in typical applications). The

outer minimization is a convex minimization problem with J variables, which is

also straightforward to solve numerically.

4 Evaluation: static hedging

In this section we evaluate the performance of robust immunization and other

existing methods using a numerical experiment in a static setting.
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4.1 Experimental design

Data and yield curve model We obtain daily U.S. Treasury nominal yield

curve data from November 25, 1985 to September 2022 from the Federal Reserve.8

We denote the days by s = 1, . . . , S, where S = 9,201 is the sample size. These

daily yield curves are estimated using the methodology of Gürkaynak et al. (2007),

who assume that the instantaneous forward rate at term t is specified by the

Svensson (1994) model

f(t) = β0 + β1 exp(−t/τ1) + β2(t/τ1) exp(−t/τ1) + β3(t/τ2) exp(−t/τ2), (4.1)

where β0, β1, β2, β3 ∈ R and τ1, τ2 > 0 are parameters. The functional form (4.1)

allows for two humps in the forward curve that are governed by the parameters τ1

and τ2. Integrating the forward rate in (4.1), we obtain the cumulative discount

rate

x(t) = β0t− β1τ1 exp(−t/τ1)− β2(t+ τ1) exp(−t/τ1)− β3(t+ τ2) exp(−t/τ2).

Note that the parameters in (4.1) change over time, but we suppress the time

subscript s for notional clarity. Our data set includes the estimated parameters

(β0, β1, β2, β3, τ1, τ2) for each day, with which we can evaluate the forward curve

(and hence the yield and cumulative discount curves) at arbitrary term t ≥ 0.

Remark 6. The estimated parameters of Gürkaynak et al. (2007) go back all the

way to 1961, but we only use their data beyond 11/25/1985 when bonds with a

maturity of 30 years were introduced in the market. The authors caution against

extrapolation of the forward rate beyond the maximum available bond maturity.

Anticipating our empirical application, we need to obtain forward rates with a

maturity up to 50 years. Since extrapolation is still necessary in this case, we

extrapolate the forward rate by a constant beyond the 30-year maturity. This

approach is motivated by no-arbitrage arguments which stipulate that the long

term forward rate is constant (Dybvig et al., 1996). In Appendix E.1, we show

how the constant forward rate assumption affects our estimate of the yield curve.

Approximating forward rate changes by basis functions Our theory is

based on the assumption that changes in the forward rate can be approximated

by the basis functions. To evaluate this assumption, we regress the d-day ahead

8https://www.federalreserve.gov/data/nominal-yield-curve.htm
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forward rate changes on the basis functions gi in (3.18) and calculate a goodness-

of-fit measure denoted by R2 (see Appendix E.2 for details).

The left panel of Figure 2 shows this goodness-of-fit measure R2 for various

horizons d. The goodness-of-fit seems to be independent of d except when I = 1.

The first basis function (constant) explains between 50 and 65% of variations in

the forward rate changes, and the first two basis functions (constant and linear)

explain about 80%. This result shows that it can be important to account for

principal components in constructing the robust immunization portfolio, as in

Theorem 3.5. The right panel shows the unexplained component 1 − R2 as we

include more basis functions. We can see that setting I = 10 captures about

99.9% (1−R2 < 10−3) of variations in the forward rate changes.

0 20 40 60 80 100

Days ahead

0

0.2

0.4

0.6

0.8

1

R
2

I = 1
I = 2
I = 3
I = 4
I = 5

0 10 20 30 40 50

Number of basis functions (I)

10!10

10!8

10!6

10!4

10!2

100
1
!

R
2

Figure 2: Goodness-of-fit of forward rate change approximation.

Note: The left panel shows R2 for each d-day ahead change in the forward rate using the basis
functions {gi}Ii=1 in (3.18) as regressors. The right panel shows the combined 1 − R2 as we
increase the number of basis functions I. See Appendix E.2 for details.

Cash flow and immunization methods We now turn to the immunization

design. We suppose that the future cash flows of the liability are equal to 1/(12T )

every month for T = 50 years (so the cumulative cash flow is normalized to 1), and

the bonds available for trade are zero-coupon bonds with face value 1 and years

to maturity being a subset of {1, 5, 10, 20, 30}. We intentionally choose a long

maturity of 50 years for the cash flows because it is of interest to study how the

yield curve at the long end affects the performance of the immunization methods.

We consider three immunization methods. The first method is high-order

duration matching (HD) explained in Remark 3, which is a special case of robust

immunization by setting I = J−1 and hi(t) = ti. By basis invariance (Proposition

3.2), we can choose any polynomial basis, so we use the Chebyshev functions in
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Lemma 3.8 with T = 50. The second method is key rate duration matching (KRD)

proposed by Ho (1992) and explained in Appendix E.3. In short, this method is

designed to match the liability and portfolio sensitivity to interest rate changes

at pre-specified maturities. The third method is our proposed robust immuniza-

tion method (RI) with the Chebyshev basis for the forward rate in Lemma 3.8.

Motivated by the right panel of Figure 2, we set the number of basis functions to

I = 10. For the portfolio constraint, motivated by Theorem 3.5 and the left panel

of Figure 2, we consider value matching only (Z0 in (3.16)), value- and duration

matching (Z1 in (3.12)) and value-, duration- and convexity matching. We refer

to these methods as RI(0), RI(1) and RI(2) respectively.9

For each method, we consider immunizing the cash flows with J = 2, 3, 4, 5

bonds. J = 2 corresponds to using the 1- and 30-year zero-coupon bonds, and we

add the 5-, 10-, and 20-year bond for J = 3, 4, 5, respectively. Note that for HD,

J = 2 is simply classical immunization with duration matching; J = 3 is duration

and convexity matching. For KRD, we use the longer maturity bonds to match the

key rates and we use the remaining shortest maturity bond to match value. For

example, in case J = 3, we use the 30- and 5-year bond to match the 30- and

5-year key rate of liabilities and we use the remaining 1-year bond to match the

value of liabilities.

Return error Suppose that on day s, the fund manager immunizes future cash

flows with a bond portfolio zs = (zsj) constructed by the HD, KRD, and RI methods.

Motivated by the error estimate (3.10), we evaluate each method using the absolute

return error on day s+ d defined by

1

P (xs)

∣∣∣∣∣P (xs+d)−
J∑

j=1

zsjPj(xs+d)

∣∣∣∣∣ , (4.2)

where xs(t) is the cumulative discount rate on day s for term t and we consider the

portfolio holding period of d = 1, . . . , 100 days.10 The performance measure (4.2)

can be understood as the return error if after forming the immunizing portfolio

on day s, the yield curve instantaneously shifts to that of day s+ d. In this sense

the return error (4.2) is a performance measure of static hedging. We address

dynamic hedging in Section 5.

9The RI(2) method is defined only when J ≥ 3 because otherwise the portfolio constraint Z2

is generally empty.
10We also considered the relative pricing error 1

P (xs+d)

∣∣∣P (xs+d)−
∑J

j=1 zsjPj(xs+d)
∣∣∣ but it

makes no material difference because P (xs) and P (xs+d) have the same order of magnitude.
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4.2 Results

Figure 3 shows the return error defined by (4.2) averaged over the sample period.

The return error worsens with longer portfolio holding periods (d) for all bond

quantities and methods because of greater yield curve fluctuations. When there

are only two bonds (J = 2, Figure 3a), by construction the HD and RI(1) method

agree and they achieve the lowest return error. When there are three bonds (J = 3,

Figure 3b), by construction the HD and RI(2) methods agree, and they achieve the

lowest return error, with RI(1) close behind. When there are four bonds (J = 4,

Figure 3c), RI(1) clearly outperforms all other methods. Finally, in case of five

bonds (J = 5, Figure 3d), RI(1) and RI(2) are the best performing methods

with RI(2) being slightly more accurate over short horizons whereas RI(1) is more

accurate over longer holding periods. Overall, the lowest error is achieved by RI(1)

with four bonds. Turning to the existing approaches in the literature, we see that

HD does well only for J ≤ 3, while the performance of KRD is only comparable to

robust immunization in case of using five bonds.

Figure 3 presents only average return errors. To evaluate the performance

of each method under adversarial circumstances, Table 1 presents the mean, 95-

and 99 percentiles of the return error for a portfolio holding period of 30 days.

According to this table, the performance of the HD method is non-monotonic,

which performs best when J = 3 but deteriorates when J ≥ 4. The performance

of the KRD method monotonically improves with J , but it is accurate only when

J = 5. In contrast, RI(1) and RI(2) perform well with any number of bonds and

their return errors are an order of magnitude lower compared to HD and KRD when

J ≥ 4.

We can summarize the findings in Figure 3 and Table 1 as follows: (i) Re-

gardless of the number of bonds, one of the robust immunization (RI) methods

achieves the lowest return error, and generally RI(1) (matching value and dura-

tion) or RI(2) (matching value, duration, and convexity) is the best. (ii) The

performance of the HD method is non-monotonic in J , performing best with J = 3

but poorly with J ≥ 4. (iii) The performance of KRD is poor for J ≤ 4 and good

for J = 5.

We next compare the performance of the best specification for each method.

For example, we set J = 3 for HD and J = 5 for KRD, and we consider RI(1) for

robust immunization with J = 4 bonds. Figure 4a shows the time series plot of the

return error for each immunization method. We see that RI(1) is dominating the

other methods almost uniformly over the entire sample period. Furthermore, KRD
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Figure 3: Return error for different holding periods.

Note: The figure presents the return error in portfolio value defined by (4.2) over various hold-
ing periods, averaged over the entire sample period. RI(0): robust immunization with a value
matching; RI(1): robust immunization with value and duration matching; RI(2): robust immu-
nization with value, duration, and convexity matching; HD: high-order duration matching; KRD:
key rate duration matching. The panels in the figure show the error for different number of
bonds J used to construct the immunizing portfolio.

meaningfully outperforms HD only before 1990. Figure 4b shows the histogram of

the absolute return errors (4.2). We can see that large return errors tend to be less

frequent with RI(1). To see this formally, Figure 4c plots the survival probability

of return losses (defined analogously to (4.2) but without taking absolute values)

above various thresholds. The fact that RI(1) has lower tail (survival) probability

than other methods implies that losses are less likely. Figure 4d plots the value

at risk (VaR) of each method. The value at risk is the quantile of the return

distribution and hence the graph plots the size of the return loss corresponding to

the specified loss probability. RI(1) uniformly has the lowest value at risk. These

findings are consistent with Theorem 3.5 because the robust immunization method
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Table 1: Return error (%) for 30-day holding period.

Method: RI(0) RI(1) RI(2) HD KRD

Mean
J = 2 0.54 0.52 - 0.52 1.65
J = 3 0.48 0.28 0.28 0.28 1.42
J = 4 0.54 0.12 0.19 1.02 0.85
J = 5 0.44 0.19 0.19 1.9 0.28

95th percentile
J = 2 1.66 1.60 - 1.60 4.3
J = 3 1.32 0.87 0.86 0.86 3.67
J = 4 1.52 0.43 0.58 3.44 2.2
J = 5 1.37 0.64 0.54 6.2 0.91

99th percentile
J = 2 2.38 2.49 - 2.49 6.85
J = 3 2.19 1.84 1.77 1.77 5.99
J = 4 2.53 0.85 1.17 7.62 3.59
J = 5 2.42 1.07 0.91 15.15 1.49

Note: See Figure 3 caption. The best performing method is indicated in bold.

is designed to maximize the return error under the most adversarial perturbation

to the cumulative discount rate.

We also test more formally whether the absolute return errors of RI(1) domi-

nate HD and KRD. To do so, we use the nonparametric sign test which can be used

to test whether the median absolute return error is the same for both methods.

More details about this test are described in Appendix E.4, where we show that

the 30-day return error for RI(1) is significantly better than the best performing

HD and KRD method.

Leverage To shed light on the observation that the performance in Figure 3 is

non-monotonic for HD, Table 2 shows the gross leverage (ℓ1 norm) of the portfolio

shares ∥θ∥1 =
∑J

j=1 |θj|. The leverage for HD portfolios is rather pronounced for

J = 4, 5 compared to RI, both in median and in the right tail. Mantilla-Garcia

et al. (2022) show that levered portfolios can lead to poor out-of-sample hedging,

which can explain the poor performance of HD for J = 4, 5 in Figure 3.
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Figure 4: Comparison of best specifications

Note: The figures compare the best specification for each method using 4 bonds for RI(1), 3
bonds for HD and 5 bonds for KRD. Return errors are averaged at every time period over each
d-day ahead forecast, where d = 1, . . . , 100. The time series plot in Figure 4a shows the 180-day
moving average for visibility.

5 Evaluation: dynamic hedging

Although the static hedging experiment in Section 4 may be informative, it only

addresses the performance of various immunization methods under a one-shot in-

stantaneous change in the yield curve. In practice, the fund manager will rebalance

the portfolio over time, in which case the yield curve as well as the bond matu-

rities change. In this section, we conduct a dynamic hedging experiment using

simulated yield curves.
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Table 2: ℓ1 norm of investment shares.

Method: RI(0) RI(1) RI(2) HD KRD

Median
J = 2 1 1 1 1 1
J = 3 1 1 1 1 1
J = 4 1 1 1 5.49 1
J = 5 1 1 1.09 15.55 1

95th percentile
J = 2 1 1 1 1 1
J = 3 1.02 1 1.27 1.27 1
J = 4 1 1 1.18 12.12 1
J = 5 1 1 1.91 30.07 1.01

99th percentile
J = 2 1 1 1 1 1
J = 3 1.05 1 1.31 1.31 1
J = 4 1 1 1.17 13.69 1
J = 5 1 1 2.12 33.6 1.05

Note: This table shows the ℓ1 norm of the investment shares, ∥θ∥1, for robust immunization with
a value matching constraint (RI(0)), robust immunization with a value- and duration matching
constraint (RI(1)), robust immunization with a value-, duration- and convexity matching con-
straint (RI(2)), high-order duration matching (HD) and key rate duration matching (KRD).

5.1 Implementing dynamic hedging

Let {sn}Nn=0 be the portfolio rebalancing dates (with the normalization s0 = 0) and

assume that the coupon payment dates of the liability are contained in this set.

For simplicity let sn = n∆ with ∆ > 0 so the dates are evenly spaced, although

this is inessential. The liability pays fn ≥ 0 at sn > 0. The fund manager can

use J zero-coupon bonds with face value 1 and maturities {tj}Jj=1 to hedge the

liability. We introduce the following notations:

xs(t) = cumulative discount rate for term t at time s,

Ps = present value of liability at time s,

Vs = net asset value (NAV) of fund at time s,

zs = (zsj) = immunizing portfolio at time s,

Cs = cash position at time s,

Rs = gross short rate at time s.

We now describe how to calculate these quantities recursively. At time s, the
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present value of the liability (after coupon payment) is

Ps :=
∑

n:sn>s

e−xs(sn−s)fn.

Note that at time s, the remaining term of the n-th payment is sn − s and we

only retain future payments in the sum. Let s− = s − ∆ denote the previous

rebalancing period. The NAV of the fund consists of the present value of the

bond and cash positions carried over from the previous period minus the current

liability payment, which is

Vs := Rs−Cs− +
J∑

j=1

zs−je
−xs(tj−∆) − fs.

Here, note that the cash position earns a (predetermined) gross return Rs− , and

the zero-coupon bonds have shorter maturities tj − ∆ because time has passed.

The equity (assets minus liabilities) is therefore

Es := Vs − Ps

= Rs−Cs− +
J∑

j=1

zs−je
−(x+h)(tj−∆) − fs −

∑
n:sn>s

e−(x+h)(sn−s)fn

= Rs−Cs− − fs +
J∑

j=1

zs−je
−(x+h)(tj−∆) −

∑
n:sn−∆−s−>0

e−(x+h)(sn−∆−s−)fn, (5.1)

where x = xs− denotes the cumulative discount rate at s− and h = xs − xs−

denotes the perturbation in the cumulative discount rate. As an illustration,

consider the robust immumization method introduced in Section 3. The fund

manager’s problem at time s− is to maximize the worst case equity, where the

equity is defined by Es in (5.1). Shifting s− to s, the time s objective function is

then

Es+∆(x;h) := RsCs − fs+∆ +
J∑

j=1

zsje
−(x+h)(tj−∆) −

∑
n:sn−∆−s>0

e−(x+h)(sn−∆−s)fn,

where x = xs is the current cumulative discount rate. Because fs+∆ is predeter-

mined and Cs is determined by the budget constraint and hence independent of

the perturbation h, the dynamic hedging problem reduces to the static hedging

problem discussed in Section 3 except that all payments need to be treated as if

their maturities are reduced by ∆. This modification takes into account the pas-
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sage of time and hence the reduction in bond maturities by the next rebalancing

date. For example, if the time to rebalancing is one month, a 1-year zero coupon

bond is treated as if it is an 11-month bond.

Given the current cumulative discount rate xs, it is straightforward to apply

various immunizing methods to bonds and liability with maturities reduced by ∆.

Suppose the new (time s) immunizing portfolio zs = (zsj) is chosen. Then the

cash position is the difference between the NAV and portfolio value, which is

Cs = Vs −
J∑

j=1

zsje
−xs(tj).

Note that although we reduce the maturities by ∆ to form the portfolio, we use

the actual maturities to evaluate the portfolio value and define the cash position.

Initializing at V0 = P0 (100% funding), we can implement dynamic hedging by

repeating this procedure for s = ∆, 2∆, . . . . The funding ratio at time s after

coupon payments is then
Vs

Ps

. (5.2)

5.2 Experimental design

Yield curve model In Section 4, we used the parsimonious Svensson (1994)

model fitted to the historical yield curve data to evaluate the performance of static

hedging. Unlike static hedging, where we only consider changes to the yield curve

over short horizons, in dynamic hedging the yield curve changes over long horizons

have a large impact on portfolio performance. This feature makes it problematic

to use historical data for performance evaluation. For instance, suppose that a

particular portfolio selection method over-weights in long-term bonds. Because

historical yields have been trending downwards during the 1985–2022 period, this

method may appear to have a good performance. However, the opposite is true

had the yields been trending upwards.

For this reason, in our dynamic hedging experiment, we only use simulated

yield curves generated from a no-arbitrage term structure model. Specifically,

we apply the Ang et al. (2008) 3-factor regime switching model. By simulating

yields from this (stationary) regime-switching model, we can analyze the efficacy

of each immunization method under a wide variety of different yield curves. A

more detailed description of the model, as well as the data used to estimate the

model is provided in Appendix D.11

11We chose to estimate the model ourselves instead of using the parameters reported in Ang
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We implement the dynamic hedging approach using the same liability and

zero-coupon bonds from the static problem in Section 4.1. We use all 5 bonds

for immunization for RI(0), RI(1) and KRD. In contrast, we only use 3 bonds

for HD since the performance for J > 3 is comparatively worse relative to the

other methods (see Figure 3). Since we estimate the yield curve model of Ang

et al. (2008) based on quarterly data, we assume that the immunizing portfolio is

rebalanced every quarter. We analyze the performance over a period of 10 years

and repeat the simulation 5,000 times.

Results The results are summarized in Figure 5. The left panel shows the

distribution of funding ratios at the end of the 10-year period across all simulations.

Overall, it is clear that RI(1) is the superior method, since it is centered around

1 and has the smallest variance. Also, the MSE is an order of magnitude smaller

compared to KRD, which comes second best. RI(0) is third best in terms of MSE,

and is centered around 1, even though the variance is much higher than RI(1) or

KRD. The worst performing method is HD, whose distribution is characterized by

large outliers in the left and right tail and the MSE is twice as high relative to

RI(0).

The right panel of Figure 5 sheds light on the maxmin property by showing the

first percentile of the funding ratio for each method throughout the 10-year period

across all simulations. We see that RI(1) strictly dominates the other methods

in the maxmin sense as well, consistently maintaining a funding ratio above that

of the competing methods. Even after 10-years of rebalancing, the RI(1) method

has a funding ratio close to 99%. While KRD is comparable to RI(0) and RI(1) in

earlier periods, it performs better over longer horizons, achieving an end-of-period

funding ratio equal to 98.5% in the 1% worst-case scenario.

6 Conclusion

This paper uses techniques from functional and numerical analysis to study the

classical portfolio immunization problem. The goal is to construct a portfolio that

protects a financial institution against interest rate risk. We use the concept of

a Fréchet derivative to find a portfolio that hedges against general perturbations

to the cumulative discount rate. Subsequently, we present a maxmin result that

proves existence of an immunizing portfolio which maximizes the worst-case eq-

uity loss and we provide a solution algorithm. This maxmin portfolio, which we

et al. (2008, Table III) to better reflect the evolution in yields over the last decade.
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Figure 5: Distribution of funding ratio

The left panel shows the empirical density of funding ratios calculated at the end of the 10-year
immunization period. The right panel shows the first percentile of the funding ratio throughout
the 10-year immunization period, calculated across all 5,000 simulations.

refer to as robust immunization, contains duration and convexity matching as a

special case. In our empirical applications, we show that a judicious choice of

basis functions for the discount rate leads to a robust immunization method that

outperforms existing approaches in the static and dynamic case.
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Proof. Write ∥·∥ = ∥·∥X to simplify notation. Let us first show that ∥·∥ is a

norm on X . Since x ∈ X is continuously differentiable, x′ is continuous, so

∥x∥ = supt∈[0,T ] |x′(t)| ∈ [0,∞). Clearly 0 ∈ X and ∥0∥ = 0. If ∥x∥ = 0, then

x′(t) = 0 for all t ∈ [0, T ]. Then x(t) = x(0) +
∫ t

0
x′(u) du = 0 because x(0) = 0,

so x = 0. For any α ∈ R and x ∈ X , we have

∥αx∥ = sup
t∈[0,T ]

|αx′(t)| = |α| sup
t∈[0,T ]

|x′(t)| = |α| ∥x∥ .

For anly x, y ∈ X , we have

∥x+ y∥ = sup
t∈[0,T ]

|x′(t) + y′(t)| ≤ sup
t∈[0,T ]

|x′(t)|+ sup
t∈[0,T ]

|y′(t)| = ∥x∥+ ∥y∥ .

Therefore ∥·∥ is a norm. To show that X is complete, let {xn}∞n=1 ⊂ X be a Cauchy

sequence with respect to the norm ∥·∥. Then by the definition of ∥·∥, {x′
n}

∞
n=1 is

Cauchy in C[0, T ], so there exists f ∈ C[0, T ] such that ∥x′
n − f∥∞ → 0 as n → ∞,

where ∥·∥∞ denotes the supremum norm in C[0, T ]. Define x(t) =
∫ t

0
f(u) du.

Then clearly x is continuously differentiable and x(0) = 0, so x ∈ X . Furthermore,

∥xn − x∥ = sup
t∈[0,T ]

|x′
n(t)− x′(t)| = sup

t∈[0,T ]

|x′
n(t)− f(t)| = ∥x′

n − f∥∞ → 0,

so we have xn → x in X . Therefore (X , ∥·∥X ) is a Banach space.

Lemma A.2 (Polynomial basis). Suppose Assumption 1 holds and hi is a poly-

nomial of degree i with hi(0) = 0. Then Assumption 3 holds.

Proof. Since hi is a polynomial of degree i with hi(0) = 0, without loss of generality

we may assume hi(t) = ti. Then h′
i(t) = iti−1. By the Stone-Weierstrass theorem

(Folland, 1999, p. 139), span {h′
i}

∞
i=1 is dense in C[0, T ]. Since ∥x∥X = ∥x′∥∞, it

follows that span {hi}∞i=1 is dense in X . By Assumption 1, we can choose I distinct

points
{
tnj

}I
j=1

. Consider the I × I submatrix of H defined by H̃ = (hi(tnj
)) =

(tinj
). Dividing the j-th column by tnj

> 0, H̃ reduces to a Vandermonde matrix,

which is invertible. Therefore H has full row rank. The same argument applies to

G.

Lemma A.3. Fix x ∈ X and define T : X → R by

Th = δP (x;h) = −
∫ T

0

e−x(t)h(t) dF (t).

Then T is a bounded linear operator.
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Proof. Clearly T is a linear operator. If h ∈ X , then ∥h∥X = supt∈[0,T ] |h′(t)| < ∞.

Since h(0) = 0, we obtain

|h(t)| =
∣∣∣∣∫ t

0

h′(u) du

∣∣∣∣ ≤ ∫ t

0

∥h∥X du = t ∥h∥X .

Therefore

|Th| ≤
∫ T

0

e−x(t) |h(t)| dF (t) ≤ ∥h∥X
∫ T

0

te−x(t) dF (t),

so T is a bounded linear operator with ∥T∥ ≤
∫ T

0
te−x(t) dF (t).

B Proof of main results

Proof of Proposition 3.1. Let us first show that W in (3.5) is compact, convex,

and contains 0 in the interior. Clearly 0 ∈ W . Since w 7→ G′w is linear (hence

continuous) and G′0 = 0 is an interior point of [−1, 1]N , 0 is an interior point of

W . Since W is defined by weak linear inequalities, it is closed and convex. Let us

show compactness. By Assumption 3, H has full row rank, and so does G. Take

n1, . . . , nI such that the I × I matrix G̃ := (gi,nj
) is invertible. Define

W̃ :=
{
w ∈ RI : G̃′w ∈ [−1, 1]I

}
= (G̃′)−1[−1, 1]I .

Since W̃ is defined by a subset of inequalities that define W , clearly we have

W ⊂ W̃ . Furthermore, W̃ is compact because it is the image of the compact set

[−1, 1]I under the linear (hence continuous) map (G̃′)−1 : RI → RI . Therefore

W ⊂ W̃ is compact.

Next, let us show that the minmax problem (3.6) has a solution (z∗, w∗) ∈
Z ×W . Since W is nonempty and compact and w 7→ ⟨w,Az − b⟩ is linear (hence
continuous),

M(z) := max
w∈W

⟨w,Az − b⟩ (B.1)

exists. The maximum theorem (Berge, 1963, p. 116) implies that M is continuous.

Furthermore, since 0 ∈ W , we haveM(z) ≥ 0 and hence VI(Z) = infz∈Z M(z) ≥ 0.

Let ∥·∥2 denote the ℓ2 (Euclidean) norm. Since 0 is an interior point of W , there

exists ϵ > 0 such that w ∈ W whenever ∥w∥2 ≤ ϵ. If Az ̸= b, setting w = ϵ Az−b
∥Az−b∥2

,

we obtain

M(z) ≥
〈
ϵ

Az − b

∥Az − b∥2
, Az − b

〉
= ϵ ∥Az − b∥2 . (B.2)
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Note that the lower bound (B.2) is valid even if Az = b.

To bound (B.2) from below, let us show that

∥Az − b∥2 = ∥A+z − b+∥2 (B.3)

when z ∈ Z. Using the definition (3.4), it suffices to show that a0z − 1 = 0 if

z ∈ Z. But since by Assumption 2 value matching holds, dividing (2.6) by P (x)

and using (3.2) for i = 0 (hence h0 ≡ 1), we obtain

1 =
1

P (x)

J∑
j=1

zjPj(x) =
J∑

j=1

a0jzj = a0z,

which implies (B.3). Define m := min∥z∥2=1 ∥A+z∥2, which is achieved because

∥z∥2 = 1 is a nonempty compact set and z 7→ ∥A+z∥2 is continuous. Since by

assumption A+ has full column rank, we have A+z = 0 only if z = 0, so m > 0.

Therefore it follows from (B.2) and (B.3) that for any z ∈ Z,

M(z) ≥ ϵ ∥Az − b∥2 = ϵ ∥A+z − b+∥2 ≥ ϵ(m ∥z∥2 − ∥b+∥2) → ∞ (B.4)

as ∥z∥2 → ∞, so we may restrict the minimization of M(z) to a compact subset

of Z. Since M(z) is continuous, the minmax value VI(Z) is achieved.

Finally, let us show that z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+. If

A+z = b+, then Az = b so clearly M(z) = 0 and VI(Z) = 0. If VI(Z) = 0, then

for any z ∈ Z with M(z) = VI(Z) = 0, (B.2) and (B.3) imply ∥A+z − b+∥2 = 0

and therefore A+z = b+.

Proof of Proposition 3.2. Suppose that span{h̃i}Ii=1 = span {hi}Ii=1. Since {hi}Ii=1

span {h̃i}Ii=1, there exists an I × I matrix C = (cij) such that h̃i =
∑I

j=1 cijhj.

Since {hi}Ii=1 are linearly independent, C is unique. Since {h̃i}Ii=1 also span

{hi}Ii=1, C must be invertible. Then H̃ = CH, Ã = CA, b̃ = Cb, G̃ = CG,

so setting w = C ′w̃, we obtain

M̃(z) := sup
w̃:G̃′w̃∈[−1,1]N

〈
w̃, Ãz − b̃

〉
= sup

w:G′w∈[−1,1]N
⟨w,Az − b⟩ =: M(z).

Therefore the minimizers of M and M̃ agree and the conclusion holds.

To prove Theorem 3.3, we recall Taylor’s theorem with the integral form for

the remainder term.
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Lemma B.1 (Taylor’s theorem). Let f ∈ Cn+1[0, 1], so f : [0, 1] → R is n + 1

times continuously differentiable. Then

f(1) =
n∑

k=0

f (k)(0)

k!
+

∫ 1

0

f (n+1)(s)
(1− s)n

n!
ds. (B.5)

Proof. For n = 0, (B.5) is obvious from the fundamental theorem of calculus:

f(1)− f(0) =

∫ 1

0

f ′(s) ds.

Suppose (B.5) holds for some n − 1 and consider n. Using integration by parts

and the induction hypothesis, we obtain∫ 1

0

f (n+1)(s)
(1− s)n

n!
ds =

[
f (n)(s)

(1− s)n

n!

]1
0

+

∫ 1

0

f (n)(s)
(1− s)n−1

(n− 1)!
ds

= −f (n)(0)

n!
+

(
f(1)−

n−1∑
k=0

f (k)(0)

k!

)

= f(1)−
n∑

k=0

f (k)(0)

k!
,

so (B.5) holds for n.

Proof of Theorem 3.3. For any x, h ∈ R, define f : [0, 1] → R by f(s) = e−x−sh.

Applying Lemma B.1 for n = 1, we obtain

e−x−h = e−x − e−xh+

∫ 1

0

(1− s)e−x−shh2 ds.

Setting x = x(t) and h = h(t) for x, h ∈ X and integrating both sides on [0, T ]

with respect to F , we obtain

∫ T

0

e−x(t)−h(t) dF (t) =

∫ T

0

e−x(t) dF (t)−
∫ T

0

e−x(t)h(t) dF (t)

+

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds dF (t).

Using the definition of P and P ′, we obtain

P (x+ h) = P (x) + P ′(x)h+

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds dF (t). (B.6)
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A similar equation holds for each Pj. Hence for any z = (zj) ∈ RJ we have

P (x+ h)−
J∑

j=1

zjPj(x+ h) = E0 + E1 + E2, (B.7)

where

E0 := P (x)−
J∑

j=1

zjPj(x), (B.8a)

E1 :=

(
P ′(x)−

J∑
j=1

zjP
′
j(x)

)
h, (B.8b)

E2 :=

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds d

(
F (t)−

J∑
j=1

zjFj(t)

)
. (B.8c)

Since Z satisfies value matching by Assumption 2, we have E0 = 0 by (B.8a).

Inspection of Assumption 3, (3.8), and (3.5) reveals that any h ∈ HI(∆) can be

expressed as h = ∆
∑I

i=1wihi for some w ∈ W . Using (B.8b), (3.2), and (3.3), we

obtain

E1 =

(
P ′(x)−

J∑
j=1

zjP
′
j(x)

)
h = ∆P (x) ⟨w,Az − b⟩ . (B.9)

To bound E2, note that the last integral in (B.6) is nonnegative because 1−s ≥
0 on s ∈ [0, 1] and F is increasing. Furthermore, it can be bounded above by∫ T

0

∫ 1

0

(1− s)e−x(t)+∥h∥∞ ∥h∥2∞ ds dF (t) =
1

2
∥h∥2∞ e∥h∥∞P (x).

Therefore E2 in (B.8c) can be bounded as

−1

2
∥h∥2∞ e∥h∥∞

∑
zj≥0

zjPj(x) ≤ E2 ≤
1

2
∥h∥2∞ e∥h∥∞

P (x)−
∑
zj<0

zjPj(x)

 .

(B.10)

Using (2.6) and (3.7), we obtain

P (x)−
∑
zj<0

zjPj(x) =
∑
zj≥0

zjPj(x) =
1

2

(
P (x) +

J∑
j=1

|zj|Pj(x)

)

=
1

2
P (x)

(
1 +

J∑
j=1

|θj|

)
=

1

2
P (x)(1 + ∥θ∥1). (B.11)
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Noting that ∥h∥∞ ≤ ∆T for h ∈ HI(∆), it follows from (B.10) and (B.11) that

|E2| ≤
1

4
∆2T 2e∆TP (x)(1 + ∥θ∥1). (B.12)

Combining (B.7), E0 = 0, (B.9), and (B.12), we obtain

⟨w,Az − b⟩ − 1

4
∆T 2e∆T (1 + ∥θ∥1)

≤ 1

∆P (x)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]

≤ ⟨w,Az − b⟩+ 1

4
∆T 2e∆T (1 + ∥θ∥1). (B.13)

Since by (3.7) θj is proportional to zj, there exists some constant c(x) > 0 that

depends only on x such that ∥θ∥1 ≤ c(x) ∥z∥2. Therefore maximizing (B.13) over

w ∈ W , it follows from the definition of M(z) in (B.1) that

M(z)− 1

4
∆T 2e∆T (1 + c(x) ∥z∥2)

≤ 1

∆P (x)
sup

h∈HI(∆)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]

≤ M(z) +
1

4
∆T 2e∆T (1 + c(x) ∥z∥2). (B.14)

Let m, ϵ > 0 be as in the proof of Proposition 3.1 and take ∆̄ > 0 such that

ϵm = 1
4
∆̄T 2e∆̄T c(x). Then if 0 < ∆ < ∆̄, by (B.4) both sides of (B.14) grow to

infinity as ∥z∥2 → ∞. Therefore when we take the infimum of (B.14) as well as

M(z) with respect to z ∈ Z, we may restrict it to some compact subset Z ′ ⊂ Z.

Therefore there exists a constant c′ > 0 such that

M(z)− c′∆ ≤ 1

∆P (x)
sup

h∈HI(∆)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]
≤ M(z) + c′∆

for all z ∈ Z ′ and ∆ ∈ (0, ∆̄). Taking the infimum over z ∈ Z (which is achieved

in Z ′) and letting ∆ → 0, by the definition of VI(Z) in (3.6), we obtain (3.9).

To show the error estimate (3.10), let z∗ ∈ Z be a solution to the minmax

problem (3.6). It follows from (B.13) that

1

∆P (x)

∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣ ≤ |⟨w,Az∗ − b⟩|+ 1

4
∆T 2e∆T (1 + ∥θ∥1).
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Taking the supremum over w ∈ W and noting that W is symmetric (w ∈ W
implies −w ∈ W), it follows from the definition of VI(Z) in (3.6) that (3.10)

holds.

Proof of Proposition 3.4. For each I, let MI(z) = supw∈WI
⟨w,AIz − bI⟩, where

AI , bI denote the matrix A and vector b defined by (3.2) and (3.3) and WI denotes

the set W defined by (3.5). Suppose I < I ′. Letting 0N denote the zero vector of

RN , we have WI × {0I′−I} ⊂ WI′ , so

MI(z) = sup
w∈WI

⟨w,AIz − bI⟩ = sup
w∈WI×{0I′−I}

⟨w,AI′z − bI′⟩

≤ sup
w∈WI′

⟨w,AI′z − bI′⟩ = MI′(z).

Taking the infimum over z ∈ Z, we obtain VI(Z) ≤ VI′(Z). Similarly,

VI(Z) = inf
z∈Z

MI(z) ≥ inf
z∈Z′

MI(z) = VI(Z ′).

Proof of Theorem 3.5. Because the proof is similar to that of Theorem 3.3, we

only provide a sketch.

By assumption, Z1 in (3.12) is nonempty, and it is clearly closed. Hence by

Proposition 3.1 the minmax value VI(Z1) defined by (3.6) is achieved by some z∗ ∈
Z1. Inspection of Assumption 3, (3.11), and (3.5) reveals that any h ∈ HI(∆1,∆2)

can be expressed as h = ∆1vh1 +∆2

∑I
i=1 wihi for some w ∈ W and v ∈ R with

|v| ≤ minn 1/ |h′(tn)| =: v̄ ∈ (0,∞). Applying a similar argument to the derivation

of (B.13), we obtain

1

P (x)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]
= ∆1v(Az − b)1 +∆2 ⟨w,Az − b⟩+O(∆2

1 +∆2
2),

where (Az − b)1 denotes the first entry of the vector Az − b. Maximizing both

sides over h ∈ HI(∆,∆1), we obtain

sup
h∈HI(∆,∆1)

1

P (x)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]
= ∆1v̄ |(Az − b)1|+∆2M(z) +O(∆2

1 +∆2
2),

where M(z) is defined by (B.1). Dividing both sides by ∆2 > 0 and letting
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∆2 → 0, ∆1/∆2 → ∞, and ∆2
1/∆2 → 0, the objective function remains finite only

if (Az − b)1 = 0, which is equivalent to z ∈ Z1. Under this condition, we have

1

∆
sup

h∈HI(∆1,∆2)

1

P (x)

[
P (x+ h)−

J∑
j=1

zjPj(x+ h)

]
= M(z) +O(∆2 +∆2

1/∆2).

Minimizing over z ∈ Z1 and letting ∆2 → 0, we obtain (3.13). The proof of (3.14)

is similar.

Proof of Proposition 3.7. Suppose that the liability has maturity s with face value

1. Then the value of the liability is

P (x) =

∫ T

0

e−x(t) dF (t) = e−x(s).

Let z∗ = A−1
+ b+ be the immunizing portfolio and assume z∗ ≥ 0. Take any

perturbation h ∈ span {hi}Ii=1 and write h =
∑I

i=1wihi. Then the funding ratio is

ϕ(w) :=

∑J
j=1 z

∗
jPj(x+ h)

P (x+ h)
=

J∑
j=1

z∗j

∫ T

0

e−x(t)+x(s)−h(t)+h(s) dFj(t).

Since z∗ ≥ 0 and the exponential function is convex, ϕ(w) is convex in w ∈ RI .

Let us show that ∇ϕ(0) = 0. To this end we compute

∂ϕ

∂wi

(0) =
J∑

j=1

z∗j

∫ T

0

e−x(t)+x(s)(−hi(t) + hi(s)) dFj(t)

= ex(s)
J∑

j=1

z∗j

(
−
∫ T

0

e−x(t)hi(t) dFj(t) + hi(s)

∫ T

0

e−x(t) dFj(t)

)

= ex(s)

(
−P (x)

J∑
j=1

aijz
∗
j + hi(s)

J∑
j=1

z∗jPj(x)

)
, (B.15)

where the last line uses (3.2) and (2.4) for each bond j. Using value matching

(2.6) and the fact that the liability is a zero-coupon bond, we obtain

hi(s)
J∑

j=1

z∗jPj(x) = hi(s)P (x) = e−x(s)hi(s) =

∫ T

0

e−x(t)hi(t) dF (t) = P (x)bi,

(B.16)
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where the last equality uses (3.3). Combining (B.15) and (B.16), we obtain

∇ϕ(0) = b− Az∗ = 0. (B.17)

Since ϕ is convex, it follows that ϕ(w) ≥ ϕ(0) = 1 for all w, which implies

(3.17).

Proof of Lemma 3.8. For i = 1, since T0(x) = 1, we have g1(t) = 1 and hence

(3.19) implies (3.20a). For i = 2, since T1(x) = x, we have g2(t) = min {2t/T − 1, 1}.
Integrating this expression gives (3.20b). Suppose i ≥ 3. Letting x = cos θ, we

can evaluate the integral of Chebyshev polynomials as∫ x

−1

Tn(x) dx =

∫ θ

π

cosnθ(− sin θ) dθ

=
1

2

∫ θ

π

(sin(n− 1)θ − sin(n+ 1)θ) dθ

=
1

2

[
cos(n+ 1)θ

n+ 1
− cos(n− 1)θ

n− 1

]θ
π

=
1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1
− 2(−1)n

(n+ 1)(n− 1)

)
.

Therefore for i ≥ 3 we have

hi(t) =
1

4
T

(
Ti(2t/T − 1)

i
− Ti−2(2t/T − 1)

i− 2
+

2(−1)i

i(i− 2)

)
,

which is (3.20c)

C Generic full column rank of A+

This appendix shows that the matrix A+ in (3.4) generically has full column rank,

which makes Proposition 3.1 applicable.

Proposition C.1. Let I ≥ J − 1, {hi}Ii=1 be the basis functions, and set h0 ≡ 1.

Suppose that there exist {mi}Ji=1 ⊂ {0, 1, . . . , I} with m1 = 0 and {τj}Jj=1 ⊂ (0, T ]

such that (i) at date τj, bond j makes a lump-sum payout fj := Fj(τj)−Fj(τj−) > 0,

and (ii) the J × J matrix H̃ = (hmi
(τj)) is invertible. Then there exists a closed

set S ⊂ RJ with Lebesgue measure 0 such that the matrix A+ in (3.4) has full

column rank whenever (f1, . . . , fJ) /∈ S.

If in addition all bonds are zero-coupon bonds, then A+ has full column rank.
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We need the following lemma to prove Proposition C.1.

Lemma C.2. Let A,B be N × N matrices and define f : RN → R by f(x) =

det(A diag(x) + B), where diag(x) denotes the diagonal matrix with diagonal en-

tries x1, . . . , xN . If detA ̸= 0, then for any c ∈ R the set

f−1(c) :=
{
x ∈ RN : f(x) = c

}
is closed and has Lebesgue measure 0.

Proof. Since

det(A diag(x) +B) = det(A(diag(x) + A−1B))

= det(A)× det(diag(x) + A−1B),

without loss of generality we may assume that A is the identity matrix. Let

B = (bmn). That f
−1(c) is closed is obvious because f is continuous.

Let us show by induction on the dimension N that f−1(c) is a null set. If

N = 1, then f(x) = x1 + b11, so f−1(c) = {c− b11} is a singleton, which is a null

set. Suppose the claim holds when N = n−1 and consider n. Let Bn be the n×n

matrix obtained from the first n rows and columns of B, and let

fn(x1, . . . , xn) = det(diag(x1, . . . , xn) +Bn).

Clearly fn is affine in each variable x1, . . . , xn. Using the Laplace expansion along

the n-th column, it follows that

fn(x1, . . . , xn) = (xn + bnn)fn−1(x1, . . . , xn−1) + gn−1(x1, . . . , xn−1)

for some function gn−1 that is affine in each variable x1, . . . , xn−1.

Define the sets f−1
n−1(0) ⊂ Rn−1 and G ⊂ Rn by

f−1
n−1(0) := {(x1, . . . , xn−1) : fn−1(x1, . . . , xn−1) = 0} ,

G :=
{
(x1, . . . , xn) : (x1, . . . , xn−1) /∈ f−1

n−1(0), xn = (c− gn−1)/fn−1 − bnn
}
.

Then f−1
n (c) ⊂ (f−1

n−1(0) × R) ∪ G. By the induction hypothesis, f−1
n−1(0) has

measure 0 in Rn−1. Since G is the graph of a Borel measurable function, by

Fubini’s theorem it has measure 0. Therefore f−1
n (c) is a null set.

Proof of Proposition C.1. Define h : [0, T ] → RI by h(t) = (h0(t), h1(t), . . . , hI(t))
′.
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Let the j-th column vector of A+ be aj = (a0j, . . . , aIj)
′. By assumption, bond j

pays fj > 0 at τj ∈ (0, T ], so it follows from (3.2) that

aj =
1

P (x)

∫
[0,T ]\{τj}

e−x(t)h(t) dFj(t) +
1

P (x)
e−x(τj)fjh(τj) =: pjfj + qj. (C.1)

Collecting (C.1) into a matrix, we can write A+ = P diag(f) +Q, where P,Q are

matrices with j-th column vectors pj,qj and f = (f1, . . . , fJ). To show that A+

generically has full column rank, let Ã+ be the J × J matrix obtained by taking

its mi-th row for i = 1, . . . , J . Define P̃ , Q̃ similarly. Then Ã+ = P̃ diag(f) + Q̃.

Since pj = e−x(τj)h(τj)/P (x), we obtain

det P̃ = P (x)−J

(
J∏

j=1

e−x(τj)

)
det H̃ ̸= 0.

Therefore by Lemma C.2, Ã+ is generically invertible, so A+ has generically full

column rank.

If in addition all bonds are zero-coupon bonds, then (C.1) reduces to aj =

e−x(τj)fjh(τj)/P (x), where τj is the maturity. Then A+ = P diag(f), which has

full column rank because det P̃ ̸= 0 and fj > 0 for all j.

The fact that the set of (f1, . . . , fJ) for which A+ has rank deficiency is con-

tained in a closed set with Lebesgue measure 0 implies that the set of rank defi-

ciency is nowhere dense (has empty interior). In this sense the rank deficiency of

A+ is “rare”. The following example shows that the zero-coupon bond assumption

in Proposition C.1 is essential.

Example 1. Suppose I = J − 1 = 1 and the basis function is h1(t) = t. Bond

1 is a zero-coupon bond with face value f1 > 0 and maturity t1. Bond 2 pays

fn > 0 at time tn, where n = 2, 3. To simplify notation, write x(t1) = x1 etc. The

determinant of the matrix A+ is

detA+ = P (x)−2 det

[
f1e

−x1 f2e
−x2 + f3e

−x3

f1e
−x1t1 f2e

−x2t2 + f3e
−x3t3

]
= P (x)−2f1e

−x1
(
f2e

−x2(t2 − t1) + f3e
−x3(t3 − t1)

)
.

Therefore for any t2 < t1 < t3 and f3 > 0, we have detA+ = 0 if and only if

(f1, f2) ∈
{
(f1, f2) ∈ R2

++ : f2 = f3e
x2−x3

t3 − t1
t1 − t2

}
. (C.2)
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The closure of the rank deficiency set (C.2) is a ray in R2 and has measure 0.

D No-arbitrage term structure model

The no-arbitrage term structure model of Ang et al. (2008) features multiple fac-

tors, regime switching, and closed-form solutions for bond prices, which is conve-

nient to simulate yield curves. This appendix summarizes their model and presents

parameter estimates based on our yield curve data.

D.1 Model and bond price formula

The equation numbers follow that of Ang et al. (2008). The model has three

factors denoted by Xt = (qt, ft, πt)
′. The dynamics of factors follows the regime-

dependent VAR process

Xt+1 = µ(st+1) + ΦXt + Σ(st+1)εt+1, (2)

where

µ(st) =

 µq

µf (st)

µπ(st)

 , Φ =

Φqq 0 0

Φfq Φff 0

Φπq Φπf Φππ

 , Σ(st) =

σq 0 0

0 σf (st) 0

0 0 σπ(st)

 ,

(3)

and ε is iid N(0, I3). The regime st is a finite-state Markov chain taking values

denoted by k = 1, . . . , K with transition probability matrix Π = (pkk′). The real

short rate is given by

r̂t = δ0 + δ′1Xt. (4)

The regime-dependent price of risk is denoted by λ(st) = (λf (st), λπ(st))
′. Fur-

thermore, define

γt = γ0 + γ1qt = γ0 + γ1e
′
1Xt, (6)

where en denotes the n-th unit vector.

With this notation, the price of zero-coupon bonds can be obtained in closed

form (Ang et al., 2008, Proposition B). For each maturity n, the nominal zero-

coupon bond price in regime i and factor X is given by

Pn(i,X) = exp(An(i) +BnX), (B1)
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where the scalar An(i) and the M × 1 vector Bn can be computed as follows.

Let M = 3 be the number of factors and M1 = 2 be the number of non-q

factors. Partition Bn as Bn = [Bnq;Bnx], where Bnq is a scalar and Bnx is 2 × 1.

Similarly, let Σx(i) be the lower 2× 2 block of Σ(i).

First, define A0(i) = 0 and B0 = 0. Then define {(An, Bn)}∞n=1 recursively by

An+1(i) = −δ0 −Bnqσqγ0 + log
∑
j

pij exp
(
An(j) + (Bn − eM)′µ(j)

− (Bnx − eM1)
′Σx(j)λ(j) +

1

2
(Bn − eM)′Σ(j)Σ(j)′(Bn − eM)

)
, (B2.a)

Bn+1 = −δ1 + Φ′(Bn − eM)−Bnqσqγ1e1. (B2.b)

D.2 Data

We use end of the quarter yield data from the U.S. Department of the Treasury

for the period of 1990:Q1 to 2021:Q4; a total of 128 quarterly observations.12

The inflation data for the same period are obtained from the Bureau of Labor

Statistics, from the CPI for All Urban Consumers series (seasonally adjusted).

In the model of Ang et al. (2008), there is a distinction between yields observed

with and without error. Specifically, the yields observed with error take the form

yn(i,X) = − 1

n
logPn(i,X) + u,

where u ∼ N(0, V ) is the error term with a diagonal covariance matrix V . To

estimate the model, we use the 3-month and 30-year yields as observed without

measurement error and we use the 10- and 50-year yield as observed with error.

However, the Treasury does not provide the 50-year yield in the available data,

which only extends to a maximum maturity of 30 years. Thus, we use the 30-

year yield as a proxy for the 50-year yield observed with measurement error. We

find that including the 50-year yield in the estimation is crucial to generate yield

curves that remain relatively “flat” over long horizons, preventing the possibility

of counterfactual steep declines at the long end of the yield curve.

D.3 Parameter estimates

We consider the benchmark model IVC of Ang et al. (2008, §I.B.4). This model

has four regimes. There are two state variables denoted by sf , sπ, which both take

12https://home.treasury.gov/resource-center/data-chart-center/interest-rates/

TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll
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values in {1, 2}. The combined state s thus takes four values

s = 1 := (sf = 1, sπ = 1),

s = 2 := (sf = 1, sπ = 2),

s = 3 := (sf = 2, sπ = 1),

s = 4 := (sf = 2, sπ = 2).

We also impose the following restrictions consistent with Ang et al. (2008):

δ0 = 0.0069 (mean of nominal short rate)

δ1 = (1, 1, δπ)
′

Φfq = 0

µq = 0

γ0 = 0

λπ(st) = 0.

(D.2)

We estimate the model using maximum likelihood, but numerical optimization

is challenging since there are 36 parameters to estimate after imposing the re-

strictions in (D.2). In order to find the global maximum, we use the Global

Optimization Toolbox from MATLAB to optimize the likelihood function for

20,000 different starting values. We then use the parameters that generate the

highest likelihood value as starting values to optimize the likelihood function using

the fminunc algorithm from MATLAB. Table 3 below summarizes the resulting

parameter estimates.
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Table 3: Parameter estimates

Real short rate δ1

δ0 q f π

0.007 1.000 1.000 -0.906

Companion Form Φ q f π

q 0.972 0.000 0.000
f 0.000 0.926 0.000
π -0.733 0.991 0.840

Moments of Xt

Regime 1 Regime 2

µq × 100 0.000 0.000

µf (s
f
t )× 100 -0.025 -0.009

µπ(s
π
t )× 100 0.004 0.790

σq × 100 0.109 0.109

σf (s
f
t )× 100 0.078 0.003

σπ(s
π
t )× 100 0.001 0.948

Risk parameters λf (s
π
t )

γ1 Regime 1 Regime 2

-25.042 -1.187 -0.192

Transition Probability Π
st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4

st = 1 0.973 0.026 0.001 0.001
st = 2 0.003 0.920 0.003 0.074
st = 3 0.000 0.922 0.051 0.026
st = 4 0.107 0.310 0.515 0.068

Note: This table shows parameter estimates from the regime switching model of Ang et al.
(2008). The estimated standard deviation of the unobserved yield errors for the 10- and 50-year
maturity yields is 0.155e-02 and 0.344e-02 respectively.
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E Miscellaneous results

E.1 Bias in the estimated yield curve

In our empirical application in Section 4, we assume that the forward rate is

constant beyond the 30-year maturity, f(t) = f(30) for all t ≥ 30. As a result,

the inferred date s yield curve with term t ≥ 30 satisfies13

ŷs(t) :=
1

t

∫ t

0

fs(u) du =
1

t

∫ 30

0

fs(u) du+
1

t

∫ t

30

fs(30) du

=
1

t

∫ 30

0

fs(u) du+ fs(30)−
30

t
fs(30)

= fs(30) +O

(
1

t

)
.

Taking unconditional expectations and comparing to the true (unobserved) yield,

we obtain

E [ŷs(t)− ys(t)] = E [fs(30)− ys(t)] +O

(
1

t

)
= E [fs(30)− fs(t)] + E [fs(t)− ys(t)] +O

(
1

t

)
. (E.1)

Under integrability conditions on ys(t) and a mild stationarity assumption on bond

returns, Alvarez and Jermann (2005, Proposition 5) show that

E
[
lim
t→∞

fs(t)
]
= E

[
lim
t→∞

ys(t)
]
. (E.2)

Using the dominated convergence theorem and (E.2) in (E.1), we get

E [ŷs(t)] = E [ys(t)] + E [fs(30)− fs(t)] + o(1).

Hence, on average we estimate the correct yield plus a bias term that reflects the

average gap between the 30-year forward rate and long forward rate.

E.2 Approximating forward rate changes

In this appendix we evaluate the goodness-of-fit of approximating forward rate

changes by basis functions. Let I be the number of basis functions to include, d

13Throughout we ignore the approximation error coming from misspecification of the forward
rate model.
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be the number of days ahead, and {tn}Nn=1 be the set of terms (in years) to evaluate

forward rates, where we set tn = n/12 and N = 360 so that it corresponds to a

30-year horizon at monthly interval. We use the following procedure.

(i) For each day s and term tn, calculate the d-day ahead change in the forward

rate fs+d(tn)− fs(tn) by evaluating (4.1).

(ii) Estimate

fs+d(tn)− fs(tn) =
I∑

i=1

γisgi(tn) + ϵs(tn) (E.3)

by ordinary least squares (OLS), where gi is the basis function for the forward

rate in (3.18). Let γ̂is be the OLS estimator.

(iii) Calculate the goodness-of-fit measure

R2 :=

∑S
s=1

∑N
n=1

(∑I
i=1 γ̂isgi(tn)

)2
∑S

s=1

∑N
n=1(fs+d(tn)− fs(tn))2

. (E.4)

The goodness-of-fit measure (E.4) is similar to the conventional R2 in OLS,

except that we use “0” as the benchmark instead of the sample mean because

g1 ≡ 1 is already constant. The following proposition shows that R2 in (E.4) can

be computed efficiently.

Proposition E.1 (Efficient calculation of R2). Define the S×N matrix C = (csn)

by csn = fs+d(tn)− fs(tn) and the I ×N matrix G = (gi(tn)). Then

R2 =
tr(G′(GG′)−1GC ′C)

tr(C ′C)
, (E.5)

where tr denotes the trace (sum of diagonal entries) of the square matrix.

Proof. The n-th diagonal entry of the N ×N matrix C ′C is
∑S

s=1 c
2
sn. Therefore

the denominator of (E.4) is

S∑
s=1

N∑
n=1

(fs+d(tn)− fs(tn))
2 =

N∑
n=1

S∑
s=1

c2sn = tr(C ′C),

which is the denominator of (E.5).

Stacking (E.3) into an N × 1 vector and using G = (gi(tn)), we obtain

cs = G′γs + ϵs,
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where cs = (csn)
N
n=1, γs = (γis)

I
i=1, and ϵs = (ϵs(tn))

N
n=1. Therefore the OLS

estimator is γ̂s = (GG′)−1G′cs and the N × 1 vector of fitted values is

ĉs := G′γ̂s = G′(GG′)−1Gcs.

Stacking this vector for s = 1, . . . , S and taking the transpose, we can define the

S ×N matrix of fitted values Ĉ = (ĉsn) by

Ĉ := CG′(GG′)−1G.

By the same argument as the case with the denominator and using the property

tr(AB) = tr(BA), the numerator of (E.4) becomes

S∑
s=1

N∑
n=1

ĉ2sn = tr(Ĉ ′Ĉ) = tr(ĈĈ ′)

= tr(CG′(GG′)−1GG′(GG′)−1GC ′)

= tr(CG′(GG′)−1GC ′)

= tr(G′(GG′)−1GC ′C),

which is the numerator of (E.5).

E.3 Key rate duration matching

This appendix explains the key rate duration matching method of Ho (1992). The

key rate duration of a bond with yield curve y and yield change ∆ at time to

maturity t is defined by

KRD(y, t,∆) :=
P (y−)− P (y+)

2∆P (y)
,

where y± denotes the yield curve after changing y(t) to y(t)±∆ at a specific term

t and linearly interpolating between the adjacent terms. Following the literature,

we set the shift to ∆ = 0.01 (100 basis points).

Figure 6 illustrates the procedure for a set of key rates on December 2, 2016.

Key rate duration matching amounts to matching the key rate of liabilities at ma-

turities {tj}Jj=1 using a portfolio of zero-coupon bonds with the same maturities.14

14The key rate duration of a zero-coupon bond with maturity t is equal to t and zero otherwise.
Since we use linear interpolation after a key rate perturbation to keep the yield curve continuous,
the key rate for a zero-coupon bond with maturity t is not exactly equal to t in our application.
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(a) 1 year key rate.
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(b) 5 year key rate.
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(c) 20 year key rate.
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(d) 30 year key rate.

Figure 6: Key rate perturbations.

Note: The figures show positive and negative perturbations to the yield curve due to a 1% change
in the respective key rate. We linearly interpolate the yields after a change in the key rate to
ensure that the yield curve remains continuous. The true yield curve (in blue) is calculated on
December 2, 2016.

E.4 Sign test

In this section, we test whether the absolute return error of RI(1) is significantly

better compared to HD or KRD. For RI(1) and KRD, we use 5 bonds and for HD we

use 3 bonds since the performance with more bonds is comparatively worse. Sub-

sequently, we calculate the 30-day absolute return error (4.2) for non-overlapping

sample periods, starting at November 25, 1985. This procedure renders a total of

304 return error observations. Let us denote the return errors for each method by

eRI(1), eHD and eKRD. Under the (one-sided) null and alternative hypothesis, we have
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H0 : Pr(eRI(1) > eHD) ≥ 0.5 vs. H1 : Pr(eRI(1) > eHD) < 0.5 (E.6a)

H0 : Pr(eRI(1) > eKRD) ≥ 0.5 vs. H1 : Pr(eRI(1) > eKRD) < 0.5. (E.6b)

The test statistic for the sign test counts the number of positive differences between

eRI(1) and the error term of the alternative method. Under H0, this test statistic

follows a binomial distribution with success probability p = 0.5. Using the normal

approximation to the binomial distribution, we find Z-scores of −5.22 and −9.12

corresponding to the hypotheses (E.6a) and (E.6b). Both test scores are sufficient

to reject H0 under any conventional significance level.
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