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Abstract

How should financial institutions hedge their balance sheets against in-

terest rate risk when managing long-term assets and liabilities? We address

this question by proposing a bond portfolio solution based on ambiguity-

averse preferences, which generalizes classical immunization and accommo-

dates arbitrary liability structures, portfolio constraints, and interest rate

perturbations. In a further extension, we show that the optimal portfolio

can be computed as a simple generalized least squares problem, making the

solution both transparent and computationally efficient. The resulting port-

folio also reduces leverage by implicitly regularizing the portfolio weights,

which enhances out-of-sample performance. Numerical evaluations using

both empirical and simulated yield curves from a no-arbitrage term struc-

ture model support the feasibility and accuracy of our approach relative to

existing methods.

Keywords: immunization, interest rate risk, maxmin, robustness.

JEL codes: C65, G11, G12, G22.

1 Introduction

Many financial institutions have long-term commitments. For instance, insurance

companies promise annuities or life insurance payments to customers; (defined-

benefit) pension plans promise predetermined pension payments to retirees; or

∗We thank Bruno Biais, as well as seminar participants at HEC Paris, Norwegian School

of Economics, Queen’s University, UCSD, University of Hamburg, and the New York Camp

Econometrics conference for valuable comments and feedback.
†Department of Finance, HEC Paris. Email: de-vries@hec.fr.
‡Department of Economics, Emory University. Email: alexis.akira.toda@emory.edu.

1

mailto:de-vries@hec.fr
mailto:alexis.akira.toda@emory.edu


commercial banks may make long-term loans at fixed interest rates and thus com-

mit to receiving certain future cash flows in exchange of funding the projects with

short-term deposits. In such circumstances, it becomes crucial for financial insti-

tutions to effectively manage their assets and liabilities to hedge against interest

rate risk. The recent collapses of Silicon Valley Bank1 and First Republic Bank2—

driven by rising interest rates and the resulting decline in the value of long-term

bonds and mortgages—highlight the importance of liability-driven investing.

If zero-coupon bonds of all maturities were to exist, any deterministic future

cash flow can be replicated by these bonds (which is called a “dedication” strat-

egy), and the problem becomes trivial, at least theoretically. However, in practice

dedication is infeasible due to market incompleteness: there are fewer bonds avail-

able for trade than the number of payment dates of the liability, or the long-term

liability could have a longer maturity than the government bond with longest

maturity. Thus, in general, one can only hope to hedge against interest rate

risk approximately. The question of fundamental practical importance is how to

achieve this goal given the set of bonds available for trade.

In this article, we propose a new method to construct a hedging portfolio that

maximizes equity (asset minus liability) under the most adversarial interest rate

shock. This so-called maxmin problem originates in the work of Fisher and Weil

(1971), who show that a portfolio that matches value and duration (weighted av-

erage time to payment) is maxmin against parallel shocks to the yield curve. In

that and subsequent works, the liability is assumed to be a zero-coupon bond

and/or no short sale constraints are imposed (or implicitly assumed not to bind).3

These restrictions are undesirable in practice because most liabilities pay out over

time and short sales are essential when liabilities have very long maturities (like

pensions). This raises the question of whether maxmin portfolios exist that allow

for short selling. Furthermore, even when short sales are not necessary, the clas-

sical maxmin portfolio often produces extreme portfolio weights (Mantilla-Garcia

et al., 2022), making out-of-sample performance questionable.

Our approach overcomes these shortcomings using techniques from functional

and numerical analysis. First we argue that the most general formulation of the

maxmin problem is intractable because the objective function is not convex and

the space has infinite dimension. To make the problem manageable, we approx-

1https://www.ft.com/content/f9a3adce-1559-4f66-b172-cd45a9fa09d6
2https://www.economist.com/finance-and-economics/2023/05/03/

what-the-first-republic-deal-means-for-americas-banks
3See, e.g., Bierwag and Khang (1979), Prisman (1986), Prisman and Shores (1988), and

Balbás and Ibáñez (1998, 2002).
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imate the objective function using the Gateaux differential with respect to basis

functions that approximate yield curve shifts. This allows us to recast the maxmin

problem as a saddle point (minmax) problem where the inner maximization is a

large linear programming problem and the outer minimization is a small con-

vex programming problem, which is computationally tractable. We prove that a

robust immunizing portfolio generically exists (Proposition 3.1) and its solution

achieves the smallest error order and maximizes the worst-case equity (Theorem

1). This maxmin result is significantly different from the existing literature be-

cause both the liability structure and bond portfolio constraint are arbitrary and

the guaranteed equity bound is tight. Our result is also more general, in that it

contains the classical maxmin theorem as a special case. When the majority of

yield curve changes are captured by a small number of principal components such

as the level of the overall interest rate, we improve this guaranteed equity bound

by incorporating moment matching (e.g., duration matching) in the portfolio con-

straint (Theorem 2). We also propose particular basis functions (transformation

of Chebyshev polynomials) that are motivated by approximation theory.

Even though our solution algorithm based on linear programming is straightfor-

ward to implement, it does not yield an analytical solution. However, by changing

the norm on the space of admissible yield curve perturbations to the Euclidean

norm, we derive a closed-form expression for the maxmin portfolio (Proposition

4.1). This expression takes the form of a constrained generalized least squares pro-

jection. We exploit the connection with linear regression to express the maxmin

portfolio as a weighted average of portfolios that are maxmin with respect to

different yield curve perturbations. In this way, our portfolio is robust to a wide

range of changes in the yield curve. Moreover, we show that increasing the number

of perturbations (i.e., basis functions) introduces an implicit form of regulariza-

tion, which reduces leverage and improves out-of-sample performance. To our

knowledge, we are the first to derive a closed-form solution for the maxmin prob-

lem and establish a link with least squares regression when the number of basis

functions exceeds the number of bonds. Thanks to its analytic form and compu-

tational efficiency, our solution also enables large-scale simulations, which would

be prohibitively time-consuming using the linear programming approach.

The simulation exercise uses historical yield curve data to evaluate the change

in equity resulting from instantaneous yield curve shocks. A hedging method’s

success is measured by its ability to minimize these equity changes. Indeed, we

find that our robust immunization method generates approximation errors that are

an order of magnitude smaller than the existing approaches and has lower downside
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risk, in line with our maxmin result. This numerical experiment has a static flavor,

since we only consider one-time perturbations. In a separate simulation based on

a no-arbitrage term structure model, we consider the dynamic properties of robust

immunization, allowing for portfolio rebalancing every three months. Over a 10-

year period of rebalancing, robust immunization achieves an approximation error

at least 65% lower in the 1% worst-case scenario compared to existing methods.

1.1 Related literature

When inputs to a problem such as beliefs, information, or shocks are complicated,

it is common to optimize against the worst case scenario, i.e., solve the maxmin

problem (Gilboa and Schmeidler, 1989; Bergemann and Morris, 2005; Du, 2018;

Brooks and Du, 2021). In the context of asset-liability management, Redington

(1952, p. 290) considers the Taylor expansion of assets minus liabilities in response

to a small change in the (constant) interest rate and anticipates the importance

of convexity to guarantee the portfolio value. Fisher and Weil (1971) formalize

this idea and show that if the liability is a zero-coupon bond and a bond portfo-

lio matches the value and duration, then the portfolio value can never fall below

liabilities under any parallel shift to the yield curve. Bierwag and Khang (1979)

show that when the investor has a fixed budget to invest in bonds, then classical

immunization (duration matching) is maxmin in the sense that it maximizes the

worst possible rate of return under any parallel shift to the yield curve. Fong

and Vasicek (1984) consider any perturbation to the forward curve such that the

slope of the forward curve is bounded by some constant and derive a lower bound

on the portfolio return over the investment horizon that is proportional to it.

The constant of proportionality is a measure of interest rate risk and is called

“M -squared”. Minimization of M -squared renders a portfolio that minimizes the

likelihood of a deviation from liabilities. Bowden (1997) proposes measuring sen-

sitivity to interest rate risk using the Fréchet derivative, which Balbás and Ibáñez

(1998) use to prove a maxmin result under the assumption of no short sales. Zheng

(2007) considers perturbations to the forward rate that are Lipschitz continuous,

derives the maximum deviation of the bond value, and applies it to a portfolio

choice problem.

Several classical books and papers such as Macaulay (1938), Hicks (1939,

pp. 184-188), and Samuelson (1945) discovered that the average time to payment

(“duration”) of a bond captures the interest rate sensitivity of the bond with re-

spect to parallel shifts in the yield curve. Redington (1952) suggested matching
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the duration of the asset and liability (“immunization”) to hedge against interest

rate risk. Chambers et al. (1988), Nawalkha and Lacey (1988), and Prisman and

Shores (1988) use polynomials to approximate the yield curve and discuss immu-

nization using high-order duration measures. The latter paper is the only one that

derives a maxmin result, which holds only under no short sale constraints.

Other approaches to immunization include the “key rate duration” method of

Ho (1992), which is the bond price sensitivity with respect to local shifts in the

yield curve at certain key rates (e.g., 10-year yield). In the language of Vayanos

and Vila (2021), hedging key rate risk is relevant for preferred-habitat investors

with specific maturity preferences. Litterman and Scheinkman (1991) use princi-

pal component analysis (PCA) to identify common factors that affect bond returns

and find that the three factors called level, slope, and curvature explain a large

fraction of the variations in returns. Using these factors, Willner (1996) defines

level, slope, and curvature durations and shows how they can be used for asset-

liability management. See Sydyak (2016) for a review of this literature. In a recent

paper, Onatski and Wang (2021) argue that PCA based on the yield curve is prone

to spurious analysis since bond yields are highly persistent. As a result, Crump

and Gospodinov (2022) show that PCA tends to favor a much lower dimension of

the factor space than the true dimension, which can negatively affect the hedg-

ing performance. Since PCA hedging requires covariance estimation, we do not

include it in our simulation exercise when comparing the relative performance of

our approach. In contrast, high-order duration matching and key rate duration

matching—like our method—are truly out-of-sample, making relative comparisons

more meaningful. We further discuss our contribution relative to the literature in

Section 3.2.

2 Problem statement

2.1 Classical immunization

We start the discussion with a brief review of classical immunization. Consider

cash flows (liabilities) f1, . . . , fN > 0 paid out at time t1 < · · · < tN . Assuming a

constant (continuously-compounded) interest rate r, the present value of liabilities

is

P :=
N∑

n=1

e−rtnfn. (2.1)
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Because each term in the sum (2.1) is decreasing in r, so is the present value P .

Therefore we may define the interest rate sensitivity of liability by

D := −∂ logP
∂r

= − 1

P

∂P

∂r
=

1

P

N∑
n=1

tne
−rtnfn > 0. (2.2)

Intuitively, D is the percentage change in present value with respect to a one

percentage point change in the interest rate. The quantity D in (2.2) is called

the duration of the cash flow (f1, . . . , fN) because it can be interpreted as the

average time to payment. To see why, define the weight wn = e−rtnfn/P , which

by (2.1) is the fraction of present value of time tn payment. Since wn > 0 and∑N
n=1wn = 1, the definition of duration (2.2) implies D =

∑N
n=1wntn is indeed a

weighted average of time to payment.

In general, the interest rate need not be constant across different maturities.

If y(t) denotes the pure yield for maturity t (so by definition the price of a zero-

coupon bond with face value 1 and maturity t is e−y(t)t), then the present value

and duration of the cash flows become

P (y) =
N∑

n=1

e−y(tn)tnfn,

D(y) = − 1

P (y)
lim
∆→0

P (y +∆)− P (y)

∆
=

1

P (y)

N∑
n=1

tne
−y(tn)tnfn,

respectively. Here the duration is the sensitivity of the present value with re-

spect to an infinitesimal parallel shift in the yield curve. The idea of classical

immunization is to match the duration of asset and liability so that equity (asset

minus liability) is insensitive to yield curve shifts (Macaulay, 1938; Samuelson,

1945; Redington, 1952; Fisher and Weil, 1971; Bierwag and Khang, 1979). Below,

we generalize classical immunization to overcome the limitations discussed in the

introduction.

2.2 Robust immunization problem

We now turn to the description of the robust immunization problem. Time is

continuous and denoted by t ∈ [0, T ], where T > 0 is the planning horizon. There

are finitely many bonds available for trade indexed by j = 1, . . . , J , where J ≥ 2.

The cumulative payout of bond j is denoted by the (weakly) increasing function

Fj : [0, T ] → R+. For instance, if bond j is a zero-coupon bond with face value
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normalized to 1 and maturity tj, then

Fj(t) =

{
0 if 0 ≤ t < tj,

1 if tj ≤ t ≤ T .
(2.3)

Similarly, if bond j continuously pays out coupons at rate cj > 0 and has zero

face value, then Fj(t) = cjt for 0 ≤ t ≤ T .

The fund manager seeks to immunize future cash flows against interest rate

risk by forming a portfolio of bonds j = 1, . . . , J . Let F : [0, T ] → R+ be the

cumulative cash flow to be immunized and y : [0, T ] → R be the yield curve, which

the fund manager takes as given. The present value of cash flows is given by the

Riemann-Stieltjes integral ∫ T

0

e−ty(t) dF (t). (2.4)

Because the expression ty(t) appears frequently, it is convenient to introduce the

notation x(t) := ty(t). Note that by the definition of the instantaneous forward

rate f(t) at term t, we have

x(t) =

∫ t

0

f(u) du. (2.5)

Because x is the integral of forward rates, we refer to it as the cumulative discount

rate. Using x, we can rewrite the present value of cash flows (2.4) as

P (x) :=

∫ T

0

e−x(t) dF (t), (2.6)

which is a functional of x. We can define the price Pj(x) of bond j analogously.

The fund manager’s problem is to approximate P (x) using a linear combination

of bonds {Pj(x)}Jj=1 in a way such that the approximation is robust against per-

turbations to the yield curve y (and hence the cumulative discount rate x).

To define this portfolio choice problem, let Z ⊂ RJ and H be the sets of

admissible portfolios and perturbations to the cumulative discount rate, to be

specified later. For portfolio z ∈ Z and perturbation h ∈ H, define the “asset” by

V (z, x+ h) :=
J∑

j=1

zjPj(x+ h)
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and the “equity” by asset minus liability

E(z, x+ h) := V (z, x+ h)− P (x+ h) =
J∑

j=1

zjPj(x+ h)− P (x+ h). (2.7)

We assume the fund manager has a maxmin preference and seeks to solve

sup
z∈Z

inf
h∈H

E(z, x+ h). (2.8)

The interpretation of the maxmin problem (2.8) is as follows. Given the portfolio

z ∈ Z, nature chooses the most adversarial perturbation h ∈ H to minimize

equity. The fund manager chooses the portfolio z that guarantees the highest

equity under the worst possible perturbation. We refer to this problem as the

robust immunization problem. Maxmin preferences are common in the literature

on bond portfolio choice; see, e.g., the structural models of Gagliardini et al.

(2008) and Vayanos and Vila (2021, Appendix B). These preferences can also be

interpreted as those of a policymaker who seeks to prevent bankruptcy due to the

societal costs associated with the collapse of a large financial institution.

The objective function in (2.8) can be micro-founded using the ambiguity-

averse preferences of Gilboa and Schmeidler (1989), assuming the fund manager

has a point-mass belief.4 This set of prior beliefs may be considered overly dog-

matic and, from a technical standpoint, is not convex. In Appendix D.2, we show

that the solution to the maxmin problem we derive in Theorem 1 is equivalent to

assuming a convex set of priors formed by combinations of point masses, which

aligns precisely with the framework of Gilboa and Schmeidler (1989).

2.3 Assumptions

The maxmin problem (2.8) is intractable because we have not yet specified the

admissible sets Z,H and the objective function is nonlinear (not even convex) in

h. We thus impose several assumptions to make progress.

Assumption 1 (Discrete payouts). The bonds and liability pay out on finitely

many dates, whose union is denoted by {tn}Nn=1 ⊂ (0, T ].

Assumption 1 always holds in practice. Under this assumption, each Fj is a

step function with discontinuities at points contained in {tn}Nn=1, and integrals of

the form (2.6) reduce to summations.

4It can also be interpreted as a Wald maxmin criterion.
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Assumption 2 (Portfolio constraint). The set of admissible portfolios Z ⊂ RJ is

nonempty and closed. Furthermore, all z ∈ Z satisfy value matching:

P (x) =
J∑

j=1

zjPj(x). (2.9)

Value matching (2.9) is merely a normalization to make the initial equity (asset

minus liability) equal to 0. This assumption is standard in the immunization

literature (see, for example, Bierwag and Khang (1979)). Note that Assumption

2 allows for short sale constraints either on the entire portfolio or on individual

bonds. The latter constraint may arise if the portfolio manager is concerned about

short selling illiquid long-term bonds.

We now specify the space of cumulative discount rates and their perturbations.

Let the yields be in C[0, T ], the vector space of continuous functions on [0, T ]

endowed with the supremum norm denoted by ∥·∥∞.5 By the definition of the

cumulative discount rate, we obtain that x : [0, T ] → R defined by x(t) = ty(t) is

continuous with x(0) = 0. We thus define the space of cumulative discount rates

by

X = {x ∈ C[0, T ] : x(0) = 0} . (2.10)

Lemma D.1 shows that X is a Banach space. The next assumption allows us to

approximate any element x ∈ X , which is important for reducing the problem to

a finite dimension.

Assumption 3. There exists a countable basis {hi}∞i=1 of X such that for each

I ∈ {1, . . . , N}, the I × N matrices H := (hi(tn)) and G := (hi(tn)/tn) have full

row rank.

We refer to each hi as a basis function. The matrices H and G will be used to

approximate the discount rate and yield curve at the payout dates.6 Assumption

3 says that the basis functions are linearly independent when evaluated on the

payout dates. We impose this assumption to avoid portfolio indeterminacy. In

practice, we can always ensure that H and G have full row rank by removing

redundant basis functions if necessary. A typical example satisfying Assumption

3 is to let hi be a polynomial of degree i with hi(0) = 0 (Lemma D.2). We

now consider several examples of perturbations to the yield curve (or cumulative

discount rate) that can arise.

5As we use several different norms in this paper, we use subscripts to distinguish them. An
example is the ℓp norm on RJ for p = 1, 2, which we denote by ∥·∥p.

6Recall that the yield curve satisfies y(t) = x(t)/t.

9



Example 1 (Classical Immunization). The setting in classical immunization cor-

responds to I = 1 and h1(t) = t (hence h1(t)/t = 1), which implies that the

perturbations to the yield curve are restricted to parallel shifts.

Example 2 (Vasicek Model). In the Vasicek (1977) model, the change in the

yields from time s to s′ is given by

ys′(t)− ys(t) = (rs′ − rs)
1− e−at

at
=: h(t)/t, (2.11)

where rs is the spot rate that solves the stochastic differential equation

drs = a(b− rs) ds+ σ dWs.

A similar, though more complicated expression for the yield changes holds in the

equilibrium model of Vayanos and Vila (2021, Appendix B). Equation (2.11)

implies that the model does not allow for parallel shifts of the yield curve. As we

shall see, classical immunization is therefore never a maxmin strategy.

Example 3 (Principal Components). Similar to Diebold and Li (2006), we can

specify a 3-factor model for the yield curve at time s by:

ys(t) = β1sh1(t)/t+ β2sh2(t)/t+ β3sh3(t)/t,

where h1(t)/t represents the loading on the level factor, h2(t)/t is the loading on

the slope factor, and h3(t)/t is the loading on the curvature factor (see Figure

1). For example, an increase in β2s will increase short yields more relative to long

yields, thereby changing the slope of the yield curve. Similarly, an increase in

β3s primarily increases medium yields around the two-year maturity, while short

and long yields remain unaffected. This leads to an increase in the curvature of

the yield curve. In this setting, perturbations to the yield curve are restricted

to changes in level, slope, and curvature. Litterman and Scheinkman (1991) find

that these components are the main drivers of changes in the yield curve, although

recent work of Crump and Gospodinov (2022) suggests that the factor dimension

may be larger.

Finally, we specify the set of admissible perturbations to the cumulative dis-

count rate. For any ∆ > 0, define

HI(∆) :=
{
h ∈ span {hi}Ii=1 : (∀n) |h(tn)/tn| ≤ ∆

}
. (2.12)
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Figure 1: Factor loadings on the level, slope and curvature factors in the Diebold
and Li (2006) model.

Because h is a perturbation to the cumulative discount rate, choosing h ∈ HI(∆)

amounts to allowing the yields to change by at most ±∆ within the span of the

first I basis functions. With this choice of H, the robust immunization problem

(2.8) becomes

sup
z∈Z

inf
h∈HI(∆)

E(z, x+ h). (2.13)

3 Solving robust immunization problem

In this section we solve the maxmin problem (2.13) in the limit as ∆ ↓ 0.

3.1 Robust immunization

As the set of cumulative discount rates X forms an infinite-dimensional vector

space, we employ tools from functional analysis to analyze how prices change in

response to perturbations in the discount rate h ∈ HI(∆). We assess the price

change following an arbitrary shift in the cumulative discount rate by using the

Gateaux differential of P (x):

δP (x;h) := lim
α→0

1

α
(P (x+ αh)− P (x)) = −

∫ T

0

e−x(t)h(t) dF (t). (3.1)

Remark 1. The operator h 7→ δP (x;h) defined by (3.1) is a bounded linear opera-

tor from X to R (Lemma D.3), which is called the Fréchet derivative and denoted

by P ′(x). Thus by definition P ′(x)h = δP (x;h). In broad terms, P ′(x)h quantifies

the first-order impact on price change when the cumulative discount rate curve is
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perturbed by h.

We construct a solution to the maxmin problem (2.13) by assessing the sensi-

tivity of asset and liability to perturbations in specific directions h. Specifically,

given the basis functions {hi}Ii=1 and bonds j = 1, . . . , J , we define the sensitivity

vector b = (bi) ∈ RI of liabilities by

bi := −P
′(x)hi
P (x)

= −δP (x;hi)
P (x)

=
1

P (x)

∫ T

0

e−x(t)hi(t) dF (t). (3.2)

Note that the duration (2.2) corresponds to the special case of hi(t) = t, and there-

fore bi is a generalization. Intuitively, each entry bi represents the sensitivity of

liability to a perturbation evaluated at h = hi. Similarly, we define the sensitivity

matrix A = (aij) ∈ RI×J by

aij := −
P ′
j(x)hi

P (x)
= −δPj(x;hi)

P (x)
=

1

P (x)

∫ T

0

e−x(t)hi(t) dFj(t). (3.3)

Division by P (x) is merely a normalization to make aij unit-free. Again, each

entry aij represents the sensitivity of bond j (with F = Fj) to a perturbation

evaluated at h = hi.

If h ∈ HI(∆) in (2.12), so h = ∆
∑I

i=1wihi for some w ∈ RI (the coefficient ∆

is to make w scale-free), then using the definition of equity (2.7) and noting that

E(z, x) = 0 by Assumption 2, we obtain the sensitivity of equity

lim
∆→0

1

∆P (x)
E(z, x+ h) = −⟨w,Az − b⟩ , (3.4)

where ⟨·, ·⟩ denotes the inner product. Hence, the change in equity following an

infinitesimal perturbation in the discount rate is governed by the Fréchet deriva-

tives of the asset and liability. For h = ∆
∑I

i=1wihi ∈ HI(∆), the coefficients

(wi) need to satisfy particular restrictions. Using the definition of the matrix G in

Assumption 3 and (2.12), it is straightforward to show h = ∆
∑I

i=1wihi ∈ HI(∆)

if and only if G′w ∈ [−1, 1]N . This observation as well as (2.13) and (3.4) motivate

us to define the set

W :=
{
w ∈ RI : G′w ∈ [−1, 1]N

}
(3.5)

and the minmax problem

VI(Z) := inf
z∈Z

sup
w∈W

⟨w,Az − b⟩ . (3.6)

12



The next proposition establishes the existence of a solution to the minmax

problem (3.6). Before stating this result, it is convenient to introduce notation

for the value matching constraint, which is always assumed to hold (Assumption

2). Specifically, set h0 ≡ 1 and define a0j using (3.3). Define the 1 × J vector

a0 := (a0j) and the (I + 1)× J matrix and (I + 1)× 1 vector

A+ :=

[
a0

A

]
and b+ :=

[
1

b

]
. (3.7)

In what follows, proofs are deferred to Appendix A.

Proposition 3.1 (Minmax). Suppose Assumptions 1–3 hold, I ≥ J − 1, and A+

in (3.7) has full column rank. Then the following statements are true.

(i) There exists (z∗, w∗) ∈ Z ×W that achieves the minmax value (3.6).

(ii) VI(Z) ≥ 0, and z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+.

The solution z to the minmax problem (3.6) depends on the basis functions

{hi}Ii=1 only through its span and it is immaterial how we parameterize these

functions.

Proposition 3.2 (Basis invariance). Let everything be as in Proposition 3.1 and

Z∗ be the set of solutions z∗ ∈ Z to the minmax problem (3.6). Then VI(Z) and

Z∗ depend on the basis functions {hi}Ii=1 only through its span.

Proposition 3.1 assumes that A+ in (3.7) has full column rank, which holds

under weak conditions. If the cumulative payouts of bonds {Fj} and the basis

functions {hi} are linearly independent, the matrix A+ generically has full column

rank and therefore a solution (z, w) ∈ Z × W to the minmax problem (3.6)

generically exists. In Appendix D.3 we make this statement more precise.

Before presenting our first main result, we introduce one last piece of notation.

For any bond portfolio z ∈ Z, define the portfolio share θ = (θj) ∈ RJ by

θj := zjPj(x)/P (x). (3.8)

Assuming value matching (Assumption 2), the portfolio share θ satisfies
∑J

j=1 θj =

1. Therefore the ℓ1 norm ∥θ∥1 =
∑J

j=1 |θj| satisfies ∥θ∥1 = 1 if and only if θj ≥ 0

for all j, and ∥θ∥1 > 1 is equivalent to θj < 0 for some j. Thus ∥θ∥1 can be

interpreted as a measure of leverage, which we refer to as the gross leverage.
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Theorem 1 (Robust immunization). Let everything be as in Proposition 3.1 and

HI(∆) be as in (2.12). Then the following statements are true.

(i) The guaranteed equity satisfies

lim
∆↓0

1

∆
sup
z∈Z

inf
h∈HI(∆)

E(z, x+ h) = −P (x)VI(Z). (3.9)

(ii) Letting z∗ ∈ Z be the solution to the minmax problem (3.6) and θ = (θj) ∈
RJ be the corresponding portfolio share defined by (3.8), then

sup
h∈HI(∆)

|E(z∗, x+ h)| ≤ ∆P (x)

(
VI(Z) +

1

4
∆T 2e∆T (1 + ∥θ∥1)

)
. (3.10)

Theorem 1 has several implications. First, (3.9) shows that, to the first order,

the guaranteed equity is exactly −∆P (x)VI(Z) when yields are perturbed by at

most ±∆ within the span of the basis functions. The minmax value VI(Z) has

a natural interpretation and is the answer to the following question: “if yields

change by at most one percentage point, what is the largest percentage point

decline in the portfolio value?” The maxmin formula (3.9) provides an exact

characterization of the worst-case outcome, and the number VI(Z) can be solved

as the minmax value (3.6).7 Second, the error estimate (3.10) shows that the

solution z∗ ∈ Z to the minmax problem (3.6) achieves the lower bound in (3.9),

to the first order. In this sense z∗ is an optimal portfolio, which we refer to as

the robust immunizing portfolio. Clearly, this immunizing portfolio is independent

of ∆ > 0 as the minmax problem (3.6) does not involve ∆. Third, because the

second order term in (3.10) is proportional to 1 + ∥θ∥1, leverage can negatively

affect the immunization performance.

3.2 Relation to existing literature

In this section we discuss in some detail how Theorem 1 is related to the existing

literature. The following corollary shows that when I = J − 1 and there is no

portfolio constraint beyond value matching, the immunizing portfolio can be solved

explicitly.

7In Appendix D.2, we show that the solution is equivalent to assuming a more general set of
priors formed by convex combinations of point masses, which fits within the ambiguity-averse
framework of Gilboa and Schmeidler (1989).
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Corollary 3.3 (Robust immunization with I = J − 1). Let everything be as in

Proposition 3.1 and suppose that the only portfolio constraint is value matching

(2.9), so the set of admissible portfolios is

Z0 :=

{
z ∈ RJ : P (x) =

J∑
j=1

zjPj(x)

}
. (3.11)

If I = J − 1 and the square matrix A+ in (3.7) is invertible, then the unique

solution to (3.6) is z∗ = A−1
+ b+, with VI(Z) = 0.

Proof. Immediate from the proof of Proposition 3.1.

Remark 2. The special case of Corollary 3.3 with I = J − 1 = 1 and h1(t) = t

reduces to classical immunization that matches the bond value and duration. To

see this, recall that by the definition (2.2), the duration of the cash flow F equals

the weighted average time to payment

D =

∫ T

0
te−ty(t) dF (t)∫ T

0
e−ty(t) dF (t)

.

Using the definition x(t) = ty(t) and (3.1), the duration can be rewritten as

D =

∫ T

0
te−x(t) dF (t)∫ T

0
e−x(t) dF (t)

= −P
′(x)h1
P (x)

= b1,

where h1(t) = t and we have used (3.2). A similar calculation implies that the

duration of the immunizing portfolio is

−
∑J

j=1 zjP
′
j(x)h1∑J

j=1 zjPj(x)
= −

∑J
j=1 zjP

′
j(x)h1

P (x)
=

J∑
j=1

a1jzj

using value matching (2.9) and (3.3). Therefore if z = A−1
+ b+, so A+z = b+, the

duration is matched. By the same argument, setting I = J − 1 and hi(t) = ti

reduces to high-order duration matching (I = J − 1 = 2 is convexity matching).

If, instead, we use the basis functions corresponding to the factor loadings on the

yield curve’s level, slope, and curvature as described in Example 3, then A+z = b+

amounts to factor duration matching.

In addition to the setting in Corollary 3.3, if the liability pays out on a single

date and the immunizing portfolio does not involve short sales, we can obtain the

following global result.
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Proposition 3.4 (Guaranteed funding). Let everything be as in Corollary 3.3 and

suppose that the liability pays out on a single date. If z∗ = A−1
+ b+ ≥ 0, then for

all h ∈ span {hi}Ii=1 we have E(z∗, x+ h) ≥ 0.

Remark 3. Our maxmin result (Theorem 1) is quite different from the existing

literature such as Fisher and Weil (1971), Bierwag and Khang (1979), Shiu (1987),

and Prisman and Shores (1988). To the best of our knowledge, in this literature

it is always assumed that the liability pays out on a single date and the portfolio

does not involve short sales (z ≥ 0), yet this constraint is implicitly assumed not

to bind. Under these assumptions, Proposition 3.4 shows that the immunizing

portfolio always funds the liability, which generalizes the result of Fisher and

Weil (1971) (who proved Proposition 3.4 for I = J − 1 = 1 and h1(t) = t).

However, this result is quite restrictive because liabilities are typically paid out

over time and short sales are essential when the maturity of the liability is very

long (such as pensions). Our maxmin result (3.9) accommodates arbitrary liability

structures and portfolio constraints. These constraints can significantly improve

performance (see Section 5), or they can be used to target a specific expected

return. Furthermore, we allow the number of basis functions to exceed the number

of bonds (I ≫ J − 1), which can significantly improve hedging performance by

making the portfolio more robust to perturbations in the yield curve.

4 Extensions and implementation

In this section, we discuss extensions of robust immunization such as using the ℓp

norm and principal components and the numerical implementation.

4.1 Robust immunization with ℓp perturbations

The portfolio solution in (3.6) can be obtained using linear programming tech-

niques. However, computing the solution can become slow when the number of

basis functions or payment dates is large, due to the large number of linear con-

straints. In addition, there is no closed-form expression for the portfolio, which

makes it difficult to analyze how changes—such as adding basis functions—affect

the solution.

In order to overcome these issues, we generalize the set of admissible pertur-

bations which leads to a portfolio solution that can be obtained in closed form.

So far we defined the set of admissible perturbations as HI(∆) in (2.12). More
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generally, for measuring the magnitude of perturbations, for p ∈ [1,∞] we may

use the ℓp norm on the payment dates t = (t1, . . . , tN) defined by

∥h(t)/t∥p,t :=


(∑N

n=1 |h(tn)/tn|
p
)1/p

, (p <∞)

maxn |h(tn)/tn| , (p = ∞)
(4.1)

and define the set of admissible perturbations by

Hp
I(∆) :=

{
h ∈ span {hi}Ii=1 : ∥h(t)/t∥p,t ≤ ∆

}
. (4.2)

The case p = ∞ corresponds to what we treated in Section 3.1. With this gener-

alization, we need to redefine the minmax problem (3.6) using

Wp :=
{
w ∈ RI : ∥G′w∥p ≤ 1

}
, (4.3)

V p
I (Z) := inf

z∈Z
sup
w∈Wp

⟨w,Az − b⟩ , (4.4)

where ∥·∥p denotes the usual ℓp norm for vectors. Noting the equivalence of norms

for finite-dimensional spaces (Toda, 2025, p. 13, Theorem 1.3), it is straightforward

to generalize Theorem 1 in this setting, though the expression for the high-order

term in the error estimate in (3.10) needs to be modified appropriately.

The special case of p = 2 (Euclidean norm for perturbations) with linear con-

straints is particularly analytically tractable, as the following proposition shows.8

Proposition 4.1 (Robust immunization with ℓ2 perturbations). Suppose Assump-

tions 1–3 hold and the portfolio constraint is given by Z =
{
z ∈ RJ : Rz = r

}
,

where R ∈ RM×J has full row rank and r ∈ RM . If p = 2, A has full column rank,

and Ã := (GG′)−1A, then the unique solution to the minmax problem (4.4) is

z = (Ã′A)−1Ã′b+ (Ã′A)−1R′[R(Ã′A)−1R′]−1(r −R(Ã′A)−1Ã′b), (4.5)

where the inverses all exist.

The portfolio solution can also be viewed as a projection of the liability sensi-

tivity vector b on the bond sensitivity matrix A. Specifically, consider the model

b = Az + ε ε|A ∼ N (0, GG′) ,

8In Section 4.3, we show why it can sometimes be beneficial to impose multiple linear con-
straints in the portfolio solution.
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where N (µ,Σ) denotes the multivariate normal distribution with mean µ and

variance-covariance matrix Σ. Using maximum likelihood estimation for the con-

strained problem renders the identical solution as (4.5). Hence, the maxmin port-

folio (4.5) corresponds to a constrained generalized least squares (GLS) solution.

4.2 Robust immunization as a regularized HD portfolio

As is well known, high-order duration matching (I = J − 1, no portfolio con-

straint, and hi(t) = ti, which we refer to as HD) does not necessarily have a good

performance due to extreme leverage (Mantilla-Garcia et al., 2022). In the port-

folio literature, a useful remedy to extreme portfolio weights is to apply shrinkage

methods (Ledoit and Wolf, 2003; Kozak et al., 2020). Here we show that overi-

dentification of the portfolio (I > J − 1) can also be interpreted as a form of

regularization, leading to less extreme portfolio weights and providing a theo-

retical explanation for why the robust immunization portfolio may outperform

high-order duration matching.

It turns out that there is a close connection between high-order duration match-

ing (Corollary 3.3) and robust immunization with ℓ2 perturbations (Proposition

4.1). To spell this out in more detail we introduce some terminology. For any

matrix A ∈ RI×J with rank(A) = J , define A(s) ∈ RJ×J to be the matrix A with

row index in s ⊂ {1, . . . , I} and |s| = J . Similarly, let b(s) ∈ RJ denote the vector

b with row index in s. We call z(s) = A(s)−1b(s) ∈ RJ an elemental estimate. Ja-

cobi (1841) showed that the ordinary least squares estimator can be expressed as

the expected value of the elemental estimates, with the probability measure given

by Pr(S = s) = det [A+(s)]
2 /
∑

s det [A+(s)]
2 (see also Knight (2018)). In Ap-

pendix B.2 we generalize these results to the constrained regression case. Applied

to our context, the result is as follows.

Proposition 4.2. Let AHD ∈ R(J−1)×J be the bond sensitivity matrix corresponding

to high-order duration matching. Let A ∈ RI×J (I > J −1) be the bond sensitivity

matrix of the robust immunization portfolio in Proposition 4.1, which can be par-

titioned as A′ = [A′
HD, A({J, . . . , I})′], where A({J, . . . , I}) ∈ R(I−J+1)×J . Define

Ã := (GG′)−1A, and let

A+ =

[
a0

A

]
, Ã+ =

[
a0

Ã

]
, b+ =

[
1

b

]
.

Then the solution to the minmax problem in (4.5) with a value matching constraint
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can be expressed as

z =

∑
1⊂s det

[
Ã+(s)

]
det [A+(s)] z(s)∑

1⊂s det
[
Ã+(s)

]
det [A+(s)]

=:
∑
[M ]⊂s

λ(s)z(s), (4.6)

where z(s) = A−1
+ (s)b+(s),

∑
1⊂s denotes the sum over all subsets s of cardinality

J that contain 1, and

λ(s) =
det
[
Ã+(s)

]
det [A+(s)]∑

1⊂s det
[
Ã+(s)

]
det [A+(s)]

with
∑
1⊂s

λ(s) = 1.

One of the summands in (4.6) includes the set s = {1, . . . , J}. In that case,

z(s) is given by the HD solution in Corollary 3.3. The weight given to the HD

solution is proportional to det(A+(s)). Hence, if the sensitivity matrix of the HD

solution is close to singular, it receives little weight in the robust immunization

portfolio. In this sense robust immunization with I > J−1 helps to regularize the

portfolio solution, since extreme portfolio weights or leverage induced by a close

to singular sensitivity matrix have less bearing on the portfolio solution in (4.6).

Furthermore, the solution in (4.6) is a linear combination of different maxmin

solutions, since by Proposition 3.1 and Theorem 1, z(s) solves a minmax problem

for every s with V|s|(Z) = 0, where different basis functions correspond to the rows

s. This decomposition sheds light on the choice of basis functions. Consider the

robust immunization portfolio with I = J , and compare this to the HD solution.

If the perturbation to the yield curve is solely due to the Ith basis function, it

follows from (4.6) that the robust immunization portfolio always does better than

HD, provided the weight given to the HD portfolio is between zero and one. On the

other hand, if the perturbation is a weighted average of several basis functions,

it can be that the HD portfolio outperforms robust immunization. The choice of

basis functions thus hinges on how close they are to spanning the shock and on

how much each basis function contributes to the shock. In Figure 3 below, we

empirically find that the first 10 basis functions strike a good balance.

4.3 Robust immunization with principal components

So far we have put no structure on the basis functions {hi}Ii=1 beyond Assump-

tion 3. The set of admissible perturbations (4.2) depends only on span {hi}Ii=1

(Proposition 3.2) and the particular order or parameterization does not matter.
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However, in practice there could be some factor structure in the yield curve. For

instance, a typical shift to the yield curve might be decomposed into the sum of a

parallel shift and a nonparallel shift of a smaller size. In fact, according to Figure

3 below, the first few basis functions explain a large fraction of variations in the

yield curve changes. Therefore it could be important to account for explanatory

power of different basis functions in constructing the robust immunizing portfolio.

We formalize this idea and extend Theorem 1 and Proposition 4.1 to a setting

in which the perturbation in a particular direction (principal component) could be

larger. For any ∆1,∆2 > 0, consider the following admissible set of perturbations:

Hp
I(∆1,∆2)

:=
{
h ∈ span {hi}Ii=1 : (∃α) ∥αh1(t)/t∥p,t ≤ ∆1, ∥h(t)/t− αh1(t)/t∥p,t ≤ ∆2

}
.

(4.7)

Choosing h ∈ Hp
I(∆1,∆2) amounts to perturbing the yield curve in the direction

spanned by the first component (h1(t)/t) by a magnitude at most ∆1, and then

perturbing in an arbitrary direction spanned by the first I basis functions by a

magnitude at most ∆2. Thus setting ∆1 ≫ ∆2 captures the idea that h1 is the first

principal component. In this setting, we can generalize Theorem 1 and Proposition

4.1 as follows.

Theorem 2 (Robust immunization with principal components). Let the assump-

tions of Proposition 3.1 hold and suppose the set

Z1 :=

{
z ∈ Z :

J∑
j=1

a1jzj = b1

}
(4.8)

is nonempty, where a1j and b1 are defined by (3.3) and (3.2) with i = 1. Let

Hp
I(∆1,∆2) be as in (4.7). Then the following statements are true.

(i) The guaranteed equity satisfies

lim
1

∆2

sup
z∈Z1

inf
h∈Hp

I (∆1,∆2)
E(z, x+ h) = −P (x)V p

I (Z1), (4.9)

where the limit is taken over ∆1,∆2 → 0, ∆1/∆2 → ∞, and ∆2
1/∆2 → 0.

(ii) Letting z∗ ∈ Z1 be the solution to the minmax problem (3.6) with portfolio
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constraint Z1, we have

sup
h∈HI(∆1,∆2)

|E(z∗, x+ h)| ≤ ∆2P (x)
(
VI(Z1) +O(∆2 +∆2

1/∆2)
)
. (4.10)

Note that part (ii) uses the ℓ∞ norm, but can be extended to any other ℓp

norm for p ≥ 1. Imposing the portfolio constraint Z1 ⊂ Z may improve or worsen

the performance. To explain why, we first present the following simple result.

Proposition 4.3 (Monotonicity of minmax value). Let everything be as in The-

orem 2. If I < I ′ and Z ⊂ Z ′, then V p
I (Z) ≤ V p

I′(Z) and V p
I (Z) ≥ V p

I (Z ′).

The claim V p
I (Z) ≤ V p

I′(Z) is obvious because the more basis functions we

include, the more freedom nature has to select adversarial perturbations. The

claim V p
I (Z) ≥ V p

I (Z ′) is also obvious because the larger the set of admissible

portfolios is, the more freedom the fund manager has to select portfolios.

Comparing to (4.7) to (4.2) and applying the triangle inequality

∥h(t)/t∥p,t ≤ ∥αh1(t)/t∥p,t︸ ︷︷ ︸
≤∆1

+ ∥h(t)/t− αh1(t)/t∥p,t︸ ︷︷ ︸
≤∆2

,

we obtain Hp
I(∆1,∆2) ⊂ Hp

I(∆1+∆2). Therefore to the first order, the maximum

portfolio return loss can be bounded as

∆2V
p
I (Z1)︸ ︷︷ ︸

Theorem 2

≤ (∆1 +∆2)V
p
I (Z1) ≥ (∆1 +∆2)V

p
I (Z)︸ ︷︷ ︸

Theorem 1

,

where the right inequality follows from Proposition 4.3. Thus if ∆1 ≫ ∆2 in typical

situations (which we document in Figure 3), then imposing the constraint Z1 in

(4.8) improves the performance because the loss in the minmax value V p
I (Z1) ≥

V p
I (Z) from imposing the constraint is compensated by the gain in the coefficient

∆2 ≪ ∆1 + ∆2. However, if it so happens that ∆1 ∼ ∆2, then imposing the

constraint Z1 worsens the performance.

This result sheds further light on the sometimes poor performance of high-

order duration matching (I = J − 1, no portfolio constraint, and hi(t) = ti).

First, as we increase I while setting I = J − 1, both the span of basis functions

and the set of admissible portfolios Z expand. Because increasing I makes V p
I (Z)

larger but expanding Z makes it smaller, the combined effect could go either way.

This observation explains the poor performance of high-order duration matching.

21



Second, in the setting of Theorem 2, if ∆1 ∼ ∆2, then imposing the constraint

Z1 worsens the performance. To see why, by Proposition 4.3 we have V p
I (Z1) ≥

V p
I (Z), so if ∆1 ∼ ∆2, then

∆2V
p
I (Z1)︸ ︷︷ ︸

Theorem 2

> (∆1 +∆2)V
p
I (Z)︸ ︷︷ ︸

Theorem 1

.

Remark 4. Theorem 2 can be further generalized if we allow larger perturbations

spanned by the first few basis functions. For instance, if we use the first two basis

functions, we can define Hp
I(∆1,∆2,∆3) analogously to (4.7) by incorporating the

constraints ∥αihi(t)/t∥p,t ≤ ∆i for i = 1, 2 and

∥h(t)/t− α1h1(t)/t− α2h2(t)/t∥p,t ≤ ∆3.

The portfolio constraint (4.8) then becomes

Z2 :=

{
z ∈ Z :

J∑
j=1

aijzj = bi for i = 1, 2

}
, (4.11)

and the maxmin formula (4.9) involves V p
I (Z2). By a similar argument as above,

imposing the constraint Z2 improves the performance relative to Z1 if ∆2 ≫ ∆3,

whereas it worsens the performance if ∆2 ∼ ∆3.

4.4 Implementation

To implement robust immunization, we need to choose the basis functions {hi}Ii=1.

Although the conclusion of Theorem 1 holds regardless of the choice of the basis

functions, here we propose a particular choice.

For each i, it is natural to choose hi such that hi is a polynomial of degree i with

hi(0) = 0, for Assumption 3 then holds (Lemma D.2). By basis invariance (Propo-

sition 3.2), any choice of such a basis will result in the same immunizing portfolio.

However, we suggest using Chebyshev polynomials because they enjoy desirable

numerical properties such as the ability to approximate continuous functions (Tre-

fethen, 2019, Ch. 2–4). To be more specific, let Tn : [−1, 1] → R be the n-degree

Chebyshev polynomial defined by Tn(cos θ) = cosnθ and setting x = cos θ. We

map [0, T ] to [−1, 1] using the affine transformation t 7→ x = 2t/T − 1, and define

gi : [0, T ] → R by

gi(t) = Ti−1(2t/T − 1) (4.12)
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so that we can allow any (continuous) perturbation to the yield curve for t ∈ [0, T ].

Then we can define the basis functions for perturbing the cumulative discount rate

by hi(t) = tgi(t). Figure 2a shows the graphs of gi in (4.12) for a maturity T = 50

years, which are the rows of the matrix G in Proposition 3.1. Figure 2b shows the

graphs of the basis functions hi(t).
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Figure 2: Basis functions of robust immunization.

Because Theorem 1 takes the number of basis functions I as given, a natural

question is how to select it. Choosing a small I restricts the space of admissible

perturbations and may lead to non-robustness against model misspecification. To

address this concern, we evaluate the goodness-of-fit of approximating discount

rate changes by basis functions. For this purpose, we use the daily yield curve

data described in Section 5. Let I be the number of basis functions to include,

d the number of days ahead, and {tn}Nn=1 the set of terms (in years) to evaluate

the cumulative discount rates, where we set tn = n/12 and N = 360 so payouts

correspond to a 30-year horizon at a monthly interval. Let ys(t) be the yield curve

on day s at maturity t. We use the following procedure.

(i) For each day s and term tn, calculate the d-day ahead change in the yield

curve ys+d(tn)− ys(tn).

(ii) For each s and d, estimate

ys+d(tn)− ys(tn) =
I∑

i=1

γisdgi(tn) + ϵsd(tn), n = 1, . . . , N (4.13)

by ordinary least squares (OLS), where gi is as in (4.12).
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(iii) For each basis function i, decompose the R2 of the regression (4.13) using

the Shapley value (see Huettner and Sunder (2012)):9

R2
i =

1

k

∑
S\{i}

(
I − 1

|S|

)−1 (
R2(S ∪ {i})−R2(S)

)
.

The sum is taken over all subsets S of {1, . . . , I} that do not include basis

function gi. To calculate R2(S) for a model that includes basis functions in

S, we use 0 as the benchmark instead of the sample mean, since g1 ≡ 1 is

already a constant function. As a result, R2
i measures the explanatory power

of basis function i relative to the other basis functions.

(iv) Let {γ̂isd}Ii=1 be the OLS estimator, calculate the overall goodness-of-fit mea-

sure

R2
d :=

∑S
s=1

∑N
n=1

(∑I
i=1 γ̂isdgi(tn)

)2
∑S

s=1

∑N
n=1(ys+d(tn)− ys(tn))2

. (4.14)

The left panel of Figure 3 shows the Shapley decomposition of the R2 with

I = 6 basis functions. The Shapley values are averaged across all dates in our

sample. The explanatory power of each basis function is roughly constant across

different horizons d. The first basis function (constant) explains around 60% of

variations in the yield curve changes. In more than 91% of time periods, the R2

is above 95%. Furthermore, most of the explanatory power is contributed by the

first, second and third basis functions, while the other basis functions generally

contribute less than 5%. The right panel shows the unexplained component 1−R2
d

as we include more basis functions. We can see that setting I = 10 captures about

99.88% (1−R2
d ∼ 10−3) of variations in the yield curve changes.

We now describe the algorithm to implement robust immunization in practice.

Although the underlying theory may not be familiar to practitioners, the imple-

mentation requires little more than basic linear algebra and linear programming.

Robust Immunization.

(i) Let t = (t1, . . . , tN) be the 1 × N vector of asset/liability payout dates

and T = tN be the planning horizon. Let y = (y1, . . . , yN) be the 1×N

9The Shapley value of the R2 has some desirable properties, such as efficiency and monoton-
icty (Huettner and Sunder, 2012). Furthermore, the order of the regressors is irrelevant.
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Figure 3: Goodness-of-fit of yield curve change approximation.

Note: The left panel shows the decomposed R2 using the Shapley value corresponding to regres-
sion (4.13) with I = 6 basis functions. The Shapley values are averaged across all dates in the
sample. The right panel shows the combined 1−R2

d as we increase the number of basis functions
I. See Section 5 for data description.

vector of yields, f = (f1, . . . , fN) the 1 × N vector of liabilities, and

F = (fjn) the J ×N matrix of bond payouts.

(ii) Let I ≥ J−1, define the basis functions by (4.12), evaluate at each tn, and

construct the I ×N matrix of basis functions H = (tngi(tn)) = (hi(tn))

and G = (gi(tn)). Define the 1 × N vector of zero-coupon bond prices

p = exp(−y⊙ t), where ⊙ denotes entry-wise multiplication (Hadamard

product).

(iii) Define the I × J matrix A, I × 1 vector b, and 1× J vector a0 by

A := (H diag(p)F′)/(pf ′), b := H diag(p)f ′/(pf ′), a0 := pF′/(pf ′),

where diag(p) denotes the diagonal matrix with diagonal entries given

by p. Define the (I + 1)× J matrix A+ and (I + 1)× 1 vector b+ by

A+ :=

[
a0

A

]
and b+ :=

[
1

b

]
.

(iv) If I = J − 1 and there are no portfolio constraints, calculate the im-

munizing portfolio as z∗ = A−1
+ b+. Otherwise, numerically solve the

minmax problem (3.6) (if using the ℓ∞ norm) or use (4.5) (if using the

ℓ2 norm and constraints are linear). Nonlinear constraints, such as short
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sale restrictions, can be easily incorporated. The resulting optimization

problem can be solved using quadratic programming.

Note that the inner maximization in (3.6) is a linear programming problem

with I variables and 2N inequality constraints, which is straightforward to solve

numerically even when N is large (a few hundred in typical applications). The

outer minimization is a convex minimization problem with J variables, which

is also straightforward to solve numerically. However, in simulations in Section

5, repeatedly solving the linear programming problem can be computationally

expensive. That is why we only consider the ℓ2 solution in the simulations below.

5 Evaluation: static and dynamic hedging

In this section, we evaluate the performance of robust immunization and other

existing methods using a numerical experiment in static and dynamic settings.

5.1 Data and yield curve model

We obtain daily U.S. Treasury nominal yield curve data from November 25, 1985 to

December 2023 from Liu and Wu (2021).10 These yield curves are estimated using

a non-parametric method that accommodates general yield curve perturbations.

This is important because more complex perturbations require a greater number

of basis functions, which our approach can handle, unlike high-order duration

matching. We index the dates by s = 1, . . . , S, where S = 9,526 is the sample

length.

Remark 5. The estimated yields of Liu and Wu (2021) go back all the way to 1961,

but we only use their data beyond 11/25/1985 when bonds with a maturity of 30

years were introduced in the market. Gürkaynak et al. (2007) caution against

extrapolation of the yield curve beyond the maximum available bond maturity.

Anticipating our empirical application, we need to obtain yields with maturity

up to 50 years. Since extrapolation is still necessary in this case, we extrapolate

the forward rate by a constant beyond the 30-year maturity. This approach is

motivated by no-arbitrage arguments which stipulate that the long term forward

rate is constant (Dybvig et al., 1996). In Appendix D.4, we show how the constant

forward rate assumption affects our estimate of the yield curve.

10https://sites.google.com/view/jingcynthiawu/yield-data
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The observed yield curve data is only one sample and thus inadequate for eval-

uating the performance in a dynamic hedging experiment. Therefore in addition

to the observed yield curve data, we also use simulated yield curves generated

from a no-arbitrage term structure model. Specifically, we apply the Ang et al.

(2008) 3-factor regime switching model. By simulating yields from this stationary

regime-switching model, we can evaluate the performance of various immunization

methods under a wide variety of yield curves. See Appendix C for details.

5.2 Cash flow and immunization methods

We consider several cash flow schemes for the liability, assuming a fixed time

horizon of T = 50 years. The specifications are as follows: (i) a constant cash

flow of 1 each month throughout the horizon (fullHorizon); (ii) a constant cash

flow of 1 after year 20 (longRun); (iii) a constant cash flow of 1 between years

15 and 35 (medium); (iv) a cash flow of 1 between years 1 and 15, and again

between years 35 and 50 (shortAndLong). In all cases, we normalize the cash

flows so that their cumulative sum equals 1. The bonds available for trade are

zero-coupon bonds with face value 1 and years to maturity being {1, 2, 5, 10, 30}.
We intentionally choose a long maturity of 50 years for the cash flows because it

is of interest to study how the yield curve at the long end affects the performance

of the immunization methods.

We consider three immunization methods. The first method is high-order

duration matching (HD) explained in Remark 2, which is a special case of robust

immunization by setting I = J − 1 and hi(t) = ti. The second method is key rate

duration matching (KRD) proposed by Ho (1992) and explained in Appendix D.5.

In short, this method is designed to match the liability and asset sensitivity to

interest rate changes at pre-specified maturities. The third method is our proposed

robust immunization method (RI) with the Chebyshev polynomial basis for the

yield curve in (4.12) with T = 50. Motivated by the right panel of Figure 3, we set

the number of basis functions to I = 10. For the portfolio constraint, motivated

by Theorem 2 and the left panel of Figure 3, we consider value matching only (Z0

in (3.11)), value- and duration matching (Z1 in (4.8)), and value-, duration- and

convexity matching. We denote these methods by RI(0), RI(1), RI(2). Throughout

the simulation, we report results only for the robust immunization portfolio based

on the ℓ2 norm (see (4.5)), as it is computationally much faster than the portfolio

based on the ℓ∞ norm (see (3.6)). Unreported simulations using the ℓ∞ norm yield

similar results.
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5.3 Static hedging

Suppose that on date s, the fund manager immunizes future cash flows with a

bond portfolio zs = (zsj) constructed by the HD, KRD, and RI methods. Letting xs

be the cumulative discount rate on date s and h be a perturbation, we evaluate

the performance of each method using the funding ratio defined by

φs(h) :=
1

P (xs + h)

J∑
j=1

zsjPj(xs + h). (5.1)

We suppose that the fund manager is worried about underfunding, so we further

define the “underfunding ratio” by

1−min {φs(h), 1} . (5.2)

A higher underfunding ratio makes it less likely that a fund will cover its liabilities.

As we are interested in realistic yield changes and portfolio holding periods, we let

the perturbation h to be the change in the cumulative discount rates from date s

to s+ d for d = 1, . . . , 100 days.

Figure 4 shows the underfunding ratio (5.2) averaged over the sample period.

The performance worsens with longer portfolio holding periods (d) for all different

liabilities and immunization methods because of greater yield curve fluctuations.

In all cases, RI(2) outperforms the other methods, followed by RI(1) and RI(0).

This suggests that the robust immunization methodology provides a better hedge

than existing approaches, and that adding sensitivity constraints—such as dura-

tion or convexity matching—tends to improve performance. In three out of the

four cases shown in Figure 4, the classical HD method performs notably worse than

the competing methods, partly due to the excessive leverage in the resulting port-

folios. Leverage tends to exacerbate hedging errors (Mantilla-Garcia et al., 2022),

and Table 2 shows that leverage under classical HDmatching is orders of magnitude

higher than in the other methods. We also observe that leverage tends to increase

when additional constraints are imposed on the robust immunization portfolio.

Section 4.2 explains why: RI portfolios are constructed as averages over different

HD portfolios, which naturally reduces leverage. Imposing more constraints in the

RI portfolio implies that the average is taken over fewer HD portfolios, which tends

to increase leverage. The fact that, in most cases, all portfolios require leverage

highlights the importance of allowing short sales in Theorems 1 and 4.1.

Figure 5 shows the portfolio weights over time for the RI(2) and HD portfolios
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corresponding to the fullHorizon liability. The difference in leverage is striking,

especially on the three dates when both portfolios exhibit their highest leverage

(indicated in black). On each of these dates, which correspond to peaks in the 2008

financial crisis and the COVID-19 crisis, yields fell and the yield curve flattened

amid a “flight to safety”.11 During such periods of market distress, the classical HD

portfolio shows extreme leverage, which compromises its performance. In contrast,

the RI(2) portfolio remains only mildly levered. The extreme leverage of the HD

portfolio can be explained using numerical linear algebra: when yields are all close

to zero—as is typical in a flight to safety—the HD sensitivity matrix approaches a

Vandermonde matrix, which is known to be ill-conditioned (Beckermann, 2000).

Figure 4 reports only average underfunding ratios. To assess each method’s

performance under adverse conditions, Table 1 presents the 90th, 95th, and 99th

percentiles of the underfunding ratio (5.2) over a 30-day holding period. According

to the table, the HD method performs comparably to the other approaches only

when the liability pays out over the medium time horizon. The KRD method

performs slightly better, but is still outperformed by the robust immunization

portfolios. As before, RI(2) delivers the best performance, regardless of liability

type.

5.4 Dynamic hedging

Although the static hedging experiment in Section 5.3 may be informative, it

only addresses the performance of various immunization methods under a one-

shot instantaneous change in the yield curve. In practice, the fund manager will

rebalance the portfolio over time, in which case the yield curve as well as the

bond maturities change. In this section, to evaluate the performance of various

immunization methods under practical situations, we conduct a dynamic hedging

experiment using simulated yield curves.

Let {sn}Nn=0 be the portfolio rebalancing dates (with the normalization s0 = 0)

and assume that the coupon payment dates of the liability are contained in this

set. For simplicity let sn = n∆ with ∆ > 0 so the dates are evenly spaced,

although this is inessential. The liability pays fs ≥ 0 at time s > 0. The fund

manager can use J zero-coupon bonds with face value 1 and maturities {tj}Jj=1 to

hedge the liability. We introduce the following notations:

xs(t) = cumulative discount rate for term t at time s,

11https://www.chicagobooth.edu/review/how-treasury-yield-curve-reflects-worry
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(a) Full horizon liability.
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(b) Long term liability.
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(c) Medium term liability.
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(d) Short and long term liability.

Figure 4: Underfunding ratio for different holding periods.

Note: The figure shows the underfunding ratio (5.2) over various holding periods, averaged
over the entire sample period. RI(0): robust immunization with a value matching; RI(1): ro-
bust immunization with value and duration matching; RI(2): robust immunization with value,
duration, and convexity matching; HD: high-order duration matching; KRD: key rate duration
matching. Each panel corresponds to different number of bonds J used to construct the immu-
nizing portfolio.

Ps = present value of liability at time s,

Vs = net asset value (NAV) of fund at time s,

zs = (zsj) = immunizing portfolio at time s,

Cs = cash position at time s,

Rs = gross short rate at time s.

We now describe how to calculate these quantities recursively. At time s, the
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Figure 5: Portfolio weights over time.

Note: The figure shows portfolio weights for the RI(2) and HD portfolios in the static hedging
experiment with fullHorizon liability. The black symbols indicate the dates on which leverage
was most pronounced.

Table 1: Underfunding ratio (%) for 30-day holding period.

Method: RI(0) RI(1) RI(2) HD KRD

90th percentile
fullHorizon 3.20 1.31 0.54 13.34 4.50
longRun 7.72 3.66 2.03 43.21 10.17
medium 5.21 1.42 1.08 3.09 7.10
shortAndLong 2.53 1.52 0.89 21.22 3.47

95th percentile
fullHorizon 4.42 2.03 0.98 22.28 6.04
longRun 10.60 6.07 3.35 69.95 13.62
medium 6.83 1.89 1.45 4.40 9.41
shortAndLong 3.80 2.53 1.62 35.53 4.95

99th percentile
fullHorizon 7.97 4.71 2.94 55.35 10.74
longRun 18.20 13.85 10.75 150.25 22.88
medium 11.34 3.15 2.68 7.17 15.81
shortAndLong 8.57 6.64 4.33 89.64 9.39

Note: This table shows the quantiles of the underfunding ratio (5.2). See Figure 4 caption for
explanation of methods.

present value of the liability (after coupon payment) is

Ps :=
∑

n:sn>s

e−xs(sn−s)fsn .
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Table 2: ℓ1 norm of investment shares.

Liability Type RI(0) RI(1) RI(2) HD KRD

Median
fullHorizon 1.21 3.07 3.65 213.47 1.00
longRun 6.57 4.52 14.99 709.70 1.00
medium 3.55 3.06 2.51 42.38 1.00
shortAndLong 1.01 3.08 4.35 331.46 1.00

95th percentile
fullHorizon 1.77 4.03 6.71 426.72 1.00
longRun 7.43 4.93 17.89 985.75 1.00
medium 4.03 3.63 2.63 53.62 1.00
shortAndLong 1.02 4.86 9.32 698.41 1.00

99th percentile
fullHorizon 1.88 4.25 7.61 489.13 1.00
longRun 7.68 5.50 19.23 1119.07 1.00
medium 4.10 3.71 2.74 56.00 1.00
shortAndLong 1.02 5.30 10.73 800.39 1.00

Note: This table shows the ℓ1 norm of the investment shares, ∥θ∥1. See Figure 4 caption for
explanation of methods.

Note that at time s, the remaining term of the n-th payment is sn − s and we

only retain future payments in the sum. Let s− = s − ∆ denote the previous

rebalancing period. The NAV of the fund consists of the present value of the

bond and cash positions carried over from the previous period minus the current

liability payment, which is

Vs := Rs−Cs−︸ ︷︷ ︸
cash

+
J∑

j=1

zs−je
−xs(tj−∆)

︸ ︷︷ ︸
bond

− fs︸︷︷︸
liability

.

Here, note that the cash position earns a (predetermined) gross return Rs− , and

the zero-coupon bonds have shorter maturities tj − ∆ because time has passed.

The equity (asset minus liability) is therefore

Es := Vs − Ps

= Rs−Cs− +
J∑

j=1

zs−je
−(x+h)(tj−∆) − fs −

∑
n:sn>s

e−(x+h)(sn−s)fsn
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= Rs−Cs− − fs +
J∑

j=1

zs−je
−(x+h)(tj−∆) −

∑
n:sn−∆−s−>0

e−(x+h)(sn−∆−s−)fsn ,

(5.3)

where x = xs− denotes the cumulative discount rate at s− and h = xs − xs−

denotes the perturbation in the cumulative discount rate. As an illustration,

consider the robust immunization method introduced in Section 3. The fund

manager’s problem at time s− is to maximize the worst case equity, where the

equity is defined by Es in (5.3). Shifting s− to s, the time s objective function is

then

Es+∆(z, x+h) := RsCs−fs+∆+
J∑

j=1

zsje
−(x+h)(tj−∆)−

∑
n:sn−∆−s>0

e−(x+h)(sn−∆−s)fsn ,

where x = xs is the current cumulative discount rate. Because fs+∆ is predeter-

mined and Cs is determined by the budget constraint and hence independent of

the perturbation h, the dynamic hedging problem reduces to the static hedging

problem discussed in Section 3 except that all payments need to be treated as if

their maturities are reduced by ∆. This modification takes into account the pas-

sage of time and hence the reduction in bond maturities by the next rebalancing

date. For example, if the time to rebalancing is one quarter, a 1-year zero coupon

bond is treated as if it is a 9-month bond.

Given the current cumulative discount rate xs, it is straightforward to apply

various immunizing methods to bonds and liability with maturities reduced by ∆.

Suppose the new (time s) immunizing portfolio zs = (zsj) is chosen. Then the

cash position is the difference between the NAV and portfolio value, which is

Cs = Vs −
J∑

j=1

zsje
−xs(tj).

Note that although we reduce the maturities by ∆ to form the portfolio, we use

the actual maturities to evaluate the portfolio value and define the cash position.

Initializing at V0 = P0 (100% funding), we can implement dynamic hedging by

repeating this procedure for s = ∆, 2∆, . . . . We evaluate the quality of the hedge

at time s using the absolute return error

1

Ps−
|Vs − Ps| . (5.4)
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We implement the dynamic hedging approach using the fullHorizon liability

and the same zero-coupon bonds as in the static problem. Among the robust

portfolio methods, we focus solely on RI(2), as it performed best in the static

case. Since the yield curve model of Ang et al. (2008) is estimated using quarterly

data, we assume the immunizing portfolio is rebalanced every quarter. We evaluate

performance over a 10-year horizon, repeating the simulation 5,000 times.

The results are summarized in Figure 6. The left panel shows the histogram of

absolute return errors at the end of the 10-year period across all simulations (the

absolute return error in (5.4) evaluated at s = 40). Overall, it is clear that RI(2)

is the superior method, since it has more mass in the left tail where the absolute

return error is small. Also, the MSE is 11 times smaller compared to HD, which

comes second best. The worst performing method is KRD, which has a MSE that

is almost 100 times higher than RI(2), and is much more left skewed.

The right panel of Figure 6 sheds light on the maxmin property by showing

the 99th percentile of the absolute return error for each method throughout the

10-year period across all simulations. Interestingly, RI(2) and HD are quite compa-

rable according to this metric, especially during earlier years. Only after 6 years do

we observe a noticeable difference between the two methods. Due to increased un-

certainty, the percentiles are naturally increasing over time. KRD compares poorly

to the other methods because of outliers in the right tail, especially at the end of

the immunization period.
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Figure 6: Distribution of absolute return error

The left panel shows the histogram of absolute return errors calculated at the end of the 10-year
immunization period. The right panel shows the 99th percentile of the absolute return error
throughout the 10-year immunization period, calculated across all 5,000 simulations.
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6 Conclusion

This paper revisits the classical portfolio immunization problem, where the goal

is to construct a portfolio that protects a financial institution against interest rate

risk. We use the concept of Fréchet derivatives to find a portfolio that hedges

against general perturbations to the cumulative discount rate. Subsequently, we

present a maxmin result that proves existence of an immunizing portfolio which

maximizes the worst-case equity loss and we provide a solution algorithm. This

maxmin portfolio, which we refer to as robust immunization, contains duration

and convexity matching as a special case, and allows for arbitrary portfolio con-

straints and short selling. We propose a further extension that yields a closed-form

expression for the maxmin portfolio, which is simply a constrained GLS solution.

The analytic form allows us to show that increasing the number of basis functions

implicitly regularizes the portfolio weights, thereby reducing leverage. In addition,

the solution is computationally efficient and enables large-scale simulation. In our

empirical applications, we show that a judicious choice of basis functions for the

discount rate leads to a robust immunization method that outperforms existing

approaches in the static and dynamic case.

A Proofs

A.1 Proof of Proposition 3.1

Let us first show that W in (3.5) is compact, convex, and contains 0 in the interior.

Clearly 0 ∈ W . Since w 7→ G′w is linear (hence continuous) and G′0 = 0 is an

interior point of [−1, 1]N , 0 is an interior point of W . Since W is defined by

weak linear inequalities, it is closed and convex. Let us show compactness. By

Assumption 3, H has full row rank, and so does G. Take n1, . . . , nI such that the

I × I matrix G̃ := (gi,nj
) is invertible. Define

W̃ :=
{
w ∈ RI : G̃′w ∈ [−1, 1]I

}
= (G̃′)−1[−1, 1]I .

Since W̃ is defined by a subset of inequalities that define W , clearly we have

W ⊂ W̃ . Furthermore, W̃ is compact because it is the image of the compact set

[−1, 1]I under the linear (hence continuous) map (G̃′)−1 : RI → RI . Therefore

W ⊂ W̃ is compact.

Next, let us show that the minmax problem (3.6) has a solution (z∗, w∗) ∈
Z ×W . Since W is nonempty and compact and w 7→ ⟨w,Az − b⟩ is linear (hence
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continuous),

M(z) := max
w∈W

⟨w,Az − b⟩ (A.1)

exists. The maximum theorem (Berge, 1963, p. 116) implies thatM is continuous.

Furthermore, since 0 ∈ W , we haveM(z) ≥ 0 and hence VI(Z) = infz∈Z M(z) ≥ 0.

Let ∥·∥2 denote the ℓ2 (Euclidean) norm. Since 0 is an interior point of W , there

exists ϵ > 0 such that w ∈ W whenever ∥w∥2 ≤ ϵ. If Az ̸= b, setting w = ϵ Az−b
∥Az−b∥2

,

we obtain

M(z) ≥
〈
ϵ
Az − b

∥Az − b∥2
, Az − b

〉
= ϵ ∥Az − b∥2 . (A.2)

Note that the lower bound (A.2) is valid even if Az = b.

To bound (A.2) from below, let us show that

∥Az − b∥2 = ∥A+z − b+∥2 (A.3)

when z ∈ Z. Using the definition (3.7), it suffices to show that a0z − 1 = 0 if

z ∈ Z. But since by Assumption 2 value matching holds, dividing (2.9) by P (x)

and using (3.3) for i = 0 (hence h0 ≡ 1), we obtain

1 =
1

P (x)

J∑
j=1

zjPj(x) =
J∑

j=1

a0jzj = a0z,

which implies (A.3). Define m := min∥z∥2=1 ∥A+z∥2, which is achieved because

∥z∥2 = 1 is a nonempty compact set and z 7→ ∥A+z∥2 is continuous. Since by

assumption A+ has full column rank, we have A+z = 0 only if z = 0, so m > 0.

Therefore it follows from (A.2) and (A.3) that for any z ∈ Z,

M(z) ≥ ϵ ∥Az − b∥2 = ϵ ∥A+z − b+∥2 ≥ ϵ(m ∥z∥2 − ∥b+∥2) → ∞ (A.4)

as ∥z∥2 → ∞, so we may restrict the minimization of M(z) to a compact subset

of Z. Since M(z) is continuous, the minmax value VI(Z) is achieved.

Finally, let us show that z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+. If

A+z = b+, then Az = b so clearly M(z) = 0 and VI(Z) = 0. If VI(Z) = 0, then

for any z ∈ Z with M(z) = VI(Z) = 0, (A.2) and (A.3) imply ∥A+z − b+∥2 = 0

and therefore A+z = b+.
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A.2 Proof of Proposition 3.2

Suppose that span{h̃i}Ii=1 = span {hi}Ii=1. Since {hi}
I
i=1 span {h̃i}Ii=1, there exists

an I × I matrix C = (cij) such that h̃i =
∑I

j=1 cijhj. Since {hi}Ii=1 are linearly

independent, C is unique. Since {h̃i}Ii=1 also span {hi}Ii=1, C must be invertible.

Then H̃ = CH, Ã = CA, b̃ = Cb, G̃ = CG, so setting w = C ′w̃, we obtain

M̃(z) := sup
w̃:G̃′w̃∈[−1,1]N

〈
w̃, Ãz − b̃

〉
= sup

w:G′w∈[−1,1]N
⟨w,Az − b⟩ =:M(z).

Therefore the minimizers of M and M̃ agree and the conclusion holds.

A.3 Proof of Theorem 1

To prove Theorem 1, we recall Taylor’s theorem with the integral form for the

remainder term.

Lemma A.1 (Taylor’s theorem). Let f ∈ Cn+1[0, 1], so f : [0, 1] → R is n + 1

times continuously differentiable. Then

f(1) =
n∑

k=0

f (k)(0)

k!
+

∫ 1

0

f (n+1)(s)
(1− s)n

n!
ds. (A.5)

Proof of Theorem 1. For any x, h ∈ R, define f : [0, 1] → R by f(s) = e−x−sh.

Applying Lemma A.1 for n = 1, we obtain

e−x−h = e−x − e−xh+

∫ 1

0

(1− s)e−x−shh2 ds.

Setting x = x(t) and h = h(t) for x, h ∈ X and integrating both sides on [0, T ]

with respect to F , we obtain

∫ T

0

e−x(t)−h(t) dF (t) =

∫ T

0

e−x(t) dF (t)−
∫ T

0

e−x(t)h(t) dF (t)

+

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds dF (t).

Using the definition of P and P ′, we obtain

P (x+ h) = P (x) + P ′(x)h+

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds dF (t). (A.6)
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A similar equation holds for each Pj. Hence for any z = (zj) ∈ RJ we have

E(z, x+ h) =
J∑

j=1

zjPj(x+ h)− P (x+ h) = E0 + E1 + E2, (A.7)

where

E0 :=
J∑

j=1

zjPj(x)− P (x), (A.8a)

E1 :=

(
J∑

j=1

zjP
′
j(x)− P ′(x)

)
h, (A.8b)

E2 :=

∫ T

0

∫ 1

0

(1− s)e−x(t)−sh(t)h(t)2 ds d

(
J∑

j=1

zjFj(t)− F (t)

)
. (A.8c)

Since Z satisfies value matching by Assumption 2, we have E0 = 0 by (A.8a).

Inspection of Assumption 3, (2.12), and (3.5) reveals that any h ∈ HI(∆) can be

expressed as h = ∆
∑I

i=1wihi for some w ∈ W . Using (A.8b), (3.3), and (3.2), we

obtain

E1 =

(
J∑

j=1

zjP
′
j(x)− P ′(x)

)
h = −∆P (x) ⟨w,Az − b⟩ . (A.9)

To bound E2, note that the last integral in (A.6) is nonnegative because 1−s ≥
0 on s ∈ [0, 1] and F is increasing. Furthermore, it can be bounded above by∫ T

0

∫ 1

0

(1− s)e−x(t)+∥h∥∞ ∥h∥2∞ ds dF (t) =
1

2
∥h∥2∞ e∥h∥∞P (x),

where ∥h∥∞ = maxn |h(tn)|. (Recall that we only put restriction on h at the

payout dates.) Therefore E2 in (A.8c) can be bounded as

1

2
∥h∥2∞ e∥h∥∞

∑
zj<0

zjPj(x)− P (x)

 ≤ E2 ≤
1

2
∥h∥2∞ e∥h∥∞

∑
zj≥0

zjPj(x). (A.10)

Using (2.9) and (3.8), we obtain

P (x)−
∑
zj<0

zjPj(x) =
∑
zj≥0

zjPj(x) =
1

2

(
P (x) +

J∑
j=1

|zj|Pj(x)

)

=
1

2
P (x)

(
1 +

J∑
j=1

|θj|

)
=

1

2
P (x)(1 + ∥θ∥1). (A.11)
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Noting that ∥h∥∞ ≤ ∆T for h ∈ HI(∆), it follows from (A.10) and (A.11) that

|E2| ≤
1

4
∆2T 2e∆TP (x)(1 + ∥θ∥1). (A.12)

Combining (A.7), E0 = 0, (A.9), and (A.12), we obtain

− ⟨w,Az − b⟩ − 1

4
∆T 2e∆T (1 + ∥θ∥1)

≤ 1

∆P (x)
E(z, x+ h) ≤ −⟨w,Az − b⟩+ 1

4
∆T 2e∆T (1 + ∥θ∥1). (A.13)

Since by (3.8) θj is proportional to zj, there exists some constant c(x) > 0 that

depends only on x such that ∥θ∥1 ≤ c(x) ∥z∥2. Therefore minimizing (A.13) over

w ∈ W , it follows from the definition of M(z) in (A.1) that

−M(z)− 1

4
∆T 2e∆T (1 + c(x) ∥z∥2)

≤ 1

∆P (x)
inf

h∈HI(∆)
E(z, x+ h) ≤ −M(z) +

1

4
∆T 2e∆T (1 + c(x) ∥z∥2). (A.14)

Let m, ϵ > 0 be as in the proof of Proposition 3.1 and take ∆̄ > 0 such that

ϵm = 1
4
∆̄T 2e∆̄T c(x). Then if 0 < ∆ < ∆̄, by (A.4) both sides of (A.14) tend to

−∞ as ∥z∥2 → ∞. Therefore when we take the supremum of (A.14) with respect

to z ∈ Z, we may restrict it to some compact subset Z ′ ⊂ Z. Therefore there

exists a constant c′ > 0 such that

−M(z)− c′∆ ≤ 1

∆P (x)
inf

h∈HI(∆)
E(z, x+ h) ≤ −M(z) + c′∆

for all z ∈ Z ′ and ∆ ∈ (0, ∆̄). Taking the supremum over z ∈ Z (which is achieved

in Z ′) and letting ∆ → 0, by the definition of VI(Z) in (3.6), we obtain (3.9).

To show the error estimate (3.10), let z∗ ∈ Z be a solution to the minmax

problem (3.6). It follows from (A.13) that

1

∆P (x)
|E(z∗, x+ h)| ≤ |⟨w,Az∗ − b⟩|+ 1

4
∆T 2e∆T (1 + ∥θ∥1).

Taking the supremum over w ∈ W and noting that W is symmetric (w ∈ W
implies −w ∈ W), it follows from the definition of VI(Z) in (3.6) that (3.10)

holds.
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A.4 Proof of Proposition 3.4

Suppose that the liability has maturity s with face value 1. Then the value of the

liability is

P (x) =

∫ T

0

e−x(t) dF (t) = e−x(s).

Let z∗ = A−1
+ b+ be the immunizing portfolio and assume z∗ ≥ 0. Take any

perturbation h ∈ span {hi}Ii=1 and write h =
∑I

i=1wihi. Then the funding ratio is

ϕ(w) :=

∑J
j=1 z

∗
jPj(x+ h)

P (x+ h)
=

J∑
j=1

z∗j

∫ T

0

e−x(t)+x(s)−h(t)+h(s) dFj(t).

Since z∗ ≥ 0 and the exponential function is convex, ϕ(w) is convex in w ∈ RI .

Let us show that ∇ϕ(0) = 0. To this end we compute

∂ϕ

∂wi

(0) =
J∑

j=1

z∗j

∫ T

0

e−x(t)+x(s)(−hi(t) + hi(s)) dFj(t)

= ex(s)
J∑

j=1

z∗j

(
−
∫ T

0

e−x(t)hi(t) dFj(t) + hi(s)

∫ T

0

e−x(t) dFj(t)

)

= ex(s)

(
−P (x)

J∑
j=1

aijz
∗
j + hi(s)

J∑
j=1

z∗jPj(x)

)
, (A.15)

where the last line uses (3.3) and (2.6) for each bond j. Using value matching

(2.9) and the fact that the liability is a zero-coupon bond, we obtain

hi(s)
J∑

j=1

z∗jPj(x) = hi(s)P (x) = e−x(s)hi(s) =

∫ T

0

e−x(t)hi(t) dF (t) = P (x)bi,

(A.16)

where the last equality uses (3.2). Combining (A.15) and (A.16), we obtain

∇ϕ(0) = b− Az∗ = 0. (A.17)

Since ϕ is convex, it follows that ϕ(w) ≥ ϕ(0) = 1 for all w, which implies

E(z∗, x+ h) ≥ 0.

40



References

Alvarez, F. and U. J. Jermann (2005). “Using asset prices to measure the persis-

tence of the marginal utility of wealth”. Econometrica 73.6, 1977–2016. doi:

10.1111/j.1468-0262.2005.00643.x.

Ang, A., G. Bekaert, and M. Wei (2008). “The term structure of real rates and

expected inflation”. Journal of Finance 63.2, 797–849. doi: 10.1111/j.1540-

6261.2008.01332.x.
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Online Appendix

B Additional proofs

B.1 Proof of Proposition 4.1

To solve the inner maximization of (4.4), fix z and let c = Az − b. Then the

optimization problem reduces to

maximize ⟨c, w⟩

subject to
1

2
w′GG′w ≤ 1

2
.

If c = 0, the maximum value is 0, and any w is optimal. Therefore assume c ̸= 0

and define the Lagrangian by

L(w, λ) := ⟨c, w⟩+ λ

2
(1− w′GG′w),

where λ ≥ 0 is the Lagrange multiplier. Since by Assumption 3 the matrix G has

full row rank, GG′ is positive definite. Then the Slater constraint qualification

is satisfied and we can apply the Karush-Kuhn-Tucker theorem. The first-order

condition is

0 = ∇wL = c− λGG′w ⇐⇒ w =
1

λ
(GG′)−1c.

The complementary slackness condition is

1 = w′GG′w =
1

λ2
c′(GG′)−1c ⇐⇒ λ =

√
c′(GG′)−1c.

Therefore the maximum value is

⟨c, w⟩ = c′(GG′)−1c

λ
=
√
c′(GG′)−1c,

which is also valid when c = 0.

Noting that c = Az − b, the outer minimization reduces to

minimize
1

2

〈
Az − b, (GG′)−1(Az − b)

〉
subject to Rz = r.

Let µ ∈ RM be the Lagrange multiplier for the equality constraint and define the
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Lagrangian by

L(z, µ) :=
1

2

〈
Az − b, (GG′)−1(Az − b)

〉
+ µ′(r −Rz).

Letting Ã := (GG′)−1A, the first-order condition is

Ã′(Az − b)−R′µ = 0 ⇐⇒ z = (Ã′A)−1(Ã′b+R′µ),

where we used the fact that Ã′A = A′(GG′)−1A is invertible because A has full

column rank. The complementary slackness condition implies

r = Rz = R(Ã′A)−1(Ã′b+R′µ) ⇐⇒ µ = [R(Ã′A)−1R′]−1(r −R(Ã′A)−1Ã′b),

where we used the fact that R(Ã′A)−1R′ is invertible because R has full row rank.

Therefore the solution to the minmax problem (4.4) for p = 2 is

z = (Ã′A)−1Ã′b+ (Ã′A)−1R′[R(Ã′A)−1R′]−1(r −R(Ã′A)−1Ã′b).

B.2 Proof of Proposition 4.2

We prove Proposition 4.2 by deriving a general result that expresses a constrained

GLS estimator in terms of elemental estimates. We first derive the analogous

result for the constrained OLS estimator, which might be of independent interest.

In this section we always assume A ∈ RI×J , b ∈ RI with I ≥ J , and rank(A) = J .

Furthermore, [M ] denotes the set of integers {1, . . . ,M}, and s denotes any subset

of size J from the set {1, . . . , I}.

Proposition B.1. Let zcls ∈ RJ be the solution to the constrained least squares

problem minz ∥b− Az∥22 subject to the linear constraints Rz = r, where R ∈ RM×J

has full row rank and r ∈ RM . Define the augmented matrices

A+ =

[
R

A

]
∈ R(M+I)×J b+ =

[
r

b

]
∈ RM+I ,

and let z(s) = A+(s)
−1b+(s) ∈ RJ denote the elemental estimate based on the rows

of A+ and b+ that are in s. Then,

zcls = E(z(S)|[M ] ⊂ S) =
∑
[M ]⊂s

det[A+(s)]
2∑

[M ]⊂s det[A+(s)]2
z(s) (B.1)
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=:
∑
[M ]⊂s

λ(s)z(s),

where

λ(s) =
det[A+(s)]

2∑
[M ]⊂s det[A+(s)]2

≥ 0 and
∑
[M ]⊂s

λ(s) = 1.

In the proof we use the generalized Cauchy-Binet formula (Chapman and

Miyake, 2018, Appendix B).

Lemma B.1 (Generalized Cauchy-Binet formula). Let C ∈ Rm×n and D ∈ Rn×m,

and let T denote the set {n− j + 1, . . . , n}. Let s denote any subset of {1, . . . , n}
of cardinality m. Denote C(s) ∈ Rm×|s| by the matrix C with column index in s

and D(s) ∈ R|s|×m by the matrix D with row index in s. Then,

∑
T⊂s

det [C(s)] det [D(s)] = (−1)j det

[
0j×j D(s)

C(s) C([n− j])D([n− j])

]
.

Proof of Proposition B.1. By construction the expression for zcls in (B.1) satisfies

Rzcls = r since the sum is taken only over rows that also contain the constraints.

Using Lemma B.1 we can write∑
[M ]⊂s

det[A+(s)]
2 =

∑
[M ]⊂s

det[A+(s)
′] det[A+(s)]

= (−1)M det

[
A+([M ])′ A+ ({M + 1, . . . , I})′A+ ({M + 1, . . . , I})
0M×M A+ ([M ])

]

= (−1)M det

[
R′ A′A

0M×M R

]
= (−1)M det [A′A] det

[
R(A′A)−1R′] .

The final equality follows from the determinant formula for block matrices. Now

we define zj(s) to be the jth element of z(s). Using Cramer’s rule we have zj(s) =

det
[
Aj

+(s)
]
/ det [A+(s)], where Aj

+(s) is A+(s) except that the jth column is

replaced by b+(s). Similarly Rj is defined such that the jth column of R is

replaced by r. It then follows that∑
[M ]⊂s

det[A+(s)]
2zj(s) =

∑
[M ]⊂s

det [A+(s)
′] det

[
Aj

+(s)
]

= (−1)M det

[
A+([M ])′ A+ ({M + 1, . . . , I})′Aj

+ ({M + 1, . . . , I})
0M×M Aj

+ ([M ])

]
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= (−1)M det

[
R′ A′Aj

0M×M Rj

]
= (−1)M det

[
A′Aj

]
det
[
Rj(A′Aj)−1R′] .

In conclusion we have shown that the jth element of zcls in (B.1) can be expressed

as

zjcls =
det [A′Aj] det [Rj(A′Aj)−1R′]

det [A′A] det [R(A′A)−1R′]
(B.2)

= zjols
det [Rj(A′Aj)−1R′]

det [R(A′A)−1R′]
,

where zjols is the jth element of the unconstrained OLS solution minz ∥Az − b∥22.
The latter observation follows immediately from Cramer’s rule applied to the first

order condition A′Azols = A′b.

It remains to verify that the solution in (B.2) concurs with the constrained

least squares solution at the top of Proposition B.1. Let µ ∈ RM be the Lagrange

multiplier for the equality constraint and consider the associated Lagrangian

L(z, µ) =
1

2
∥Az − b∥22 + µ′ (Rz − r) .

The first order conditions for this problem imply[
A′A R′

R 0

][
zcls

µ

]
=

[
A′b

r

]
.

Using Cramer’s rule to get the jth element of zcls we get

zjcls =

det

[
A′Aj R′

Rj 0

]

det

[
A′A R′

R 0

] =
det [A′Aj] det [Rj(A′Aj)−1R′]

det [A′A] det [R(A′A)−1R′]
.

Proposition B.2. Consider the constrained GLS solution

zcgls := argmin
z

〈
Az − b,Ω−1(Az − b)

〉
s.t. Rz = r. (B.3)

Define Ã := Ω−1A and let Ã′
+ = [R, Ã]′. Let A+ and z(s) be the same as in
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Proposition B.1. Then the solution in (B.3) can be expressed as

zcgls =

∑
[M ]⊂s det

[
Ã+(s)

]
det [A+(s)] z(s)∑

[M ]⊂s det
[
Ã+(s)

]
det [A+(s)]

=:
∑
[M ]⊂s

λ(s)z(s),

where

λ(s) =
det
[
Ã+(s)

]
det [A+(s)]∑

[M ]⊂s det
[
Ã+(s)

]
det [A+(s)]

with
∑
[M ]⊂s

λ(s) = 1.

Remark 6. In this case λ(·) does not define a conditional probability measure since

it can take on negative values.

Proof. The steps are similar to the proof of Proposition B.1. The first order

conditions for the optimization problem in (B.3) imply[
A′Ω−1A R′

R 0

][
zcgls

µ

]
=

[
A′Ω−1b

r

]
.

Applying Cramer’s rule yields

zjcgls =

det

[
A′Ω−1Aj R′

Rj 0

]

det

[
A′Ω−1A R′

R 0

]

=
det [A′Ω−1Aj] det [Rj(A′Ω−1Aj)−1R′]

det [A′Ω−1A] det [R(A′Ω−1A)−1R′]

=
det
[
Ã′A

]
det
[
Rj(Ã′Aj)−1R′

]
det
[
Ã′A

]
det
[
R(Ã′A)−1R′

] .
The rest of the proof is identical to Proposition B.1.

Finally we prove Proposition 4.2 as a special case of Proposition B.2.

Proof of Proposition 4.2. Due to the basis invariance of the robust immunization

portfolio in (4.5), we can use the polynomial basis hi(t) = ti. Therefore, the first

J − 1 rows of A are equal to AHD. The result now follows from Proposition B.2

with Ω = GG′, R = a0, and r = 1.
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B.3 Proof of Theorem 2

Because the proof is similar to that of Theorem 1, we only provide a sketch.

By assumption, Z1 in (4.8) is nonempty, and it is clearly closed. Hence by

Proposition 3.1 the minmax value V p
I (Z1) defined by (4.4) is achieved by some

z∗ ∈ Z1. Inspection of Assumption 3, (4.7), and (3.5) reveals that any h ∈
Hp

I(∆1,∆2) can be expressed as h = ∆1vh1 +∆2

∑I
i=1wihi for some w ∈ Wp and

v ∈ R with |v| ≤ 1/ ∥h(t)/t∥p,t =: v̄ ∈ (0,∞). Applying a similar argument to the

derivation of (A.13), we obtain

1

P (x)
E(z, x+ h) = −∆1v(Az − b)1 −∆2 ⟨w,Az − b⟩+O(∆2

1 +∆2
2),

where (Az−b)1 denotes the first entry of the vector Az−b. Minimizing both sides

over h ∈ Hp
I(∆1,∆2), we obtain

inf
h∈Hp

I (∆1,∆2)

1

P (x)
E(z, x+ h) = −∆1v̄ |(Az − b)1| −∆2M

p(z) +O(∆2
1 +∆2

2),

where Mp(z) = maxw∈Wp ⟨w,Az − b⟩. Dividing both sides by ∆2 > 0 and letting

∆2 → 0, ∆1/∆2 → ∞, and ∆2
1/∆2 → 0, the objective function remains finite only

if (Az − b)1 = 0, which is equivalent to z ∈ Z1. Under this condition, we have

1

∆2

inf
h∈Hp

I (∆1,∆2)

1

P (x)
E(z, x+ h) = −Mp(z) +O(∆2 +∆2

1/∆2).

Maximizing over z ∈ Z1 and taking limits, we obtain (4.9). The proof of (4.10) is

similar.

B.4 Proof of Proposition 4.3

For each I, let MI(z) = supw∈WI
⟨w,AIz − bI⟩, where AI , bI denote the sensitivity

matrix and vector A, b defined by (3.3), (3.2) and WI denotes the set W defined

by (3.5). Suppose I < I ′. Letting 0N denote the zero vector of RN , we have

WI × {0I′−I} ⊂ WI′ , so

(z) = sup
w∈WI

⟨w,AIz − bI⟩ = sup
w∈WI×{0I′−I}

⟨w,AI′z − bI′⟩

≤ sup
w∈WI′

⟨w,AI′z − bI′⟩ =MI′(z).
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Taking the infimum over z ∈ Z, we obtain VI(Z) ≤ VI′(Z). Similarly,

VI(Z) = inf
z∈Z

MI(z) ≥ inf
z∈Z′

MI(z) = VI(Z ′).

C No-arbitrage term structure model

The no-arbitrage term structure model of Ang et al. (2008) features multiple

factors, regime switching, and closed-form solutions for bond prices, which is con-

venient for simulating yield curves. This appendix summarizes their model and

presents parameter estimates based on our yield curve data.

C.1 Model and bond price formula

The equation numbers follow that of Ang et al. (2008). The model has three

factors denoted by Xt = (qt, ft, πt)
′. The dynamics of factors follows the regime-

dependent VAR process

Xt+1 = µ(st+1) + ΦXt + Σ(st+1)εt+1, (2)

where

µ(st) =

 µq

µf (st)

µπ(st)

 , Φ =

Φqq 0 0

Φfq Φff 0

Φπq Φπf Φππ

 , Σ(st) =

σq 0 0

0 σf (st) 0

0 0 σπ(st)

 ,
(3)

and ε is iid N(0, I3). The regime st is a finite-state Markov chain taking values

denoted by k = 1, . . . , K with transition probability matrix Π = (pkk′). The real

short rate is given by

r̂t = δ0 + δ′1Xt. (4)

The regime-dependent price of risk is denoted by λ(st) = (λf (st), λπ(st))
′. Fur-

thermore, define

γt = γ0 + γ1qt = γ0 + γ1e
′
1Xt, (6)

where en denotes the n-th unit vector.

With this notation, the price of zero-coupon bonds can be obtained in closed

form (Ang et al., 2008, Proposition B). For each maturity n, the nominal zero-
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coupon bond price in regime i and factor X is given by

Pn(i,X) = exp(An(i) +BnX), (B1)

where the scalar An(i) and the M × 1 vector Bn can be computed as follows.

Let M = 3 be the number of factors and M1 = 2 be the number of non-q

factors. Partition Bn as Bn = [Bnq;Bnx], where Bnq is a scalar and Bnx is 2 × 1.

Similarly, let Σx(i) be the lower 2× 2 block of Σ(i).

First, define A0(i) = 0 and B0 = 0. Then define {(An, Bn)}∞n=1 recursively by

An+1(i) = −δ0 −Bnqσqγ0 + log
∑
j

pij exp
(
An(j) + (Bn − eM)′µ(j)

− (Bnx − eM1)
′Σx(j)λ(j) +

1

2
(Bn − eM)′Σ(j)Σ(j)′(Bn − eM)

)
, (B2.a)

Bn+1 = −δ1 + Φ′(Bn − eM)−Bnqσqγ1e1. (B2.b)

C.2 Data

We use end of the quarter yield data from Liu and Wu (2021) for the period of

1985:Q4 to 2022:Q4; a total of 149 quarterly observations.12 The authors use a

nonparametric approach to estimate the yield curve up to the 30-year maturity,

which allows us to infer the long end of the yield curve consistently over time.

The inflation data for the same period are obtained from the Bureau of Labor

Statistics, from the CPI for All Urban Consumers series (seasonally adjusted).

We estimate the term structure model ourselves instead of using the parameters

reported in Ang et al. (2008, Table III) to better reflect the evolution in yields over

the last decade. In our dynamic hedging experiment, we need to infer the yields up

to a maturity of 50 years. Estimating the term structure model, we sometimes find

counterfactual steep declines in the yield curve for long maturities, depending on

the maturities used for estimation. To mitigate this issue, we incorporate 50-year

yields in the estimation, treating them as equivalent to the observed 30-year yields.

This inclusion proves essential for generating yield curves that remain relatively

“flat” over long horizons, thereby preventing the possibility of counterfactual steep

declines at the long end of the yield curve. Additionally, we incorporate 1-year

yields in the estimation to capture short-run dynamics.13

12https://sites.google.com/view/jingcynthiawu/yield-data
13Unlike Ang et al. (2008), we do not use additional yield data as overidentifying restrictions.
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C.3 Parameter estimates

We consider the benchmark model IVC of Ang et al. (2008, §I.B.4). This model

has four regimes. There are two state variables denoted by sf , sπ, which both take

values in {1, 2}. The combined state s thus takes four values

s = 1 := (sf = 1, sπ = 1),

s = 2 := (sf = 1, sπ = 2),

s = 3 := (sf = 2, sπ = 1),

s = 4 := (sf = 2, sπ = 2).

We also impose the following restrictions consistent with Ang et al. (2008):

δ0 = 0.0077, (mean of nominal short rate)

δ1 = (1, 1, δπ)
′,

Φfq = 0,

µq = 0,

γ0 = 0,

λπ(st) = 0.

We estimate the model using maximum likelihood using the parameters from Ang

et al. (2008, Table III) as starting values. Table 3 below summarizes the resulting

parameter estimates.
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Table 3: Parameter estimates

Real short rate δ1

δ0 q f π

0.008 1.000 1.000 -0.199

Companion Form Φ q f π

q 0.962 0.000 0.000
f 0.000 0.969 0.000
π -0.139 0.246 0.178

Moments of Xt

Regime 1 Regime 2

µq × 100 0.000 0.000

µf (s
f
t )× 100 -0.621 -0.020

µπ(s
π
t )× 100 -0.789 0.726

σq × 100 0.054 0.054

σf (s
f
t )× 100 0.400 0.108

σπ(s
π
t )× 100 0.048 0.624

Prices of Risk λf (s
π
t )

γ1 Regime 1 Regime 2

-84.137 -19.734 0.051

Transition Probabilities Π
st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4

st = 1 0.744 0.174 0.037 0.045
st = 2 0.685 0.216 0.052 0.047
st = 3 0.001 0.001 0.354 0.645
st = 4 0.000 0.000 0.020 0.980
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D Miscellaneous results

D.1 Space of cumulative discount rates

Lemma D.1. Let X = {x ∈ C[0, T ] : x(0) = 0} be the vector space of continuous

functions on [0, T ] with x(0) = 0. For x ∈ X , define ∥x∥X = supt∈[0,T ] |x(t)|. Then
(X , ∥·∥X ) is a Banach space.

Proof. It is well known that the space C[0, T ] endowed with the supremum norm is

a Banach space (e.g. Folland (1999, Chapter 5)). Let L0x = x(0) be the evaluation

functional at 0. Since L0 is a continuous map and {0} is closed, we get that

L−1
0 {0} = X is a closed set. Since a closed subspace of a Banach space is a

Banach space, the proof is complete.

Lemma D.2 (Polynomial basis). Suppose Assumption 1 holds and hi is a poly-

nomial of degree i with hi(0) = 0. Then Assumption 3 holds.

Proof. Since hi is a polynomial of degree i with hi(0) = 0, without loss of generality

we may assume hi(t) = ti. By the Stone-Weierstrass theorem (Folland, 1999,

p. 139), span {hi}∞i=1 is dense in X since it separates the points and contains a

non-zero constant function. By Assumption 1, we can choose I distinct points{
tnj

}I
j=1

. Consider the I × I submatrix of H defined by H̃ = (hi(tnj
)) = (tinj

).

Dividing the j-th column by tnj
> 0, H̃ reduces to a Vandermonde matrix, which

is invertible. Therefore H has full row rank. The same argument applies to G.

Lemma D.3. The Fréchet derivative P ′(x) defined by h 7→ δP (x;h) in (3.1) is a

bounded linear operator.

Proof. Clearly P ′(x) is a linear operator. If h ∈ X , then

|P ′(x)h| ≤
∫ T

0

e−x(t) |h(t)| dF (t) ≤ ∥h∥X
∫ T

0

e−x(t) dF (t),

so P ′(x) is a bounded linear operator with operator norm less than or equal to∫ T

0
e−x(t) dF (t).

D.2 Convexifying the set of priors

The result in Theorem 1 can be interpreted as that of a decision maker with

ambiguity-averse preferences over a prior set of point masses. Here, we show that

the convex hull of this prior set generates the same maxmin result, which fits the

approach of Gilboa and Schmeidler (1989).
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First, note that the set of priors Π, consisting of point masses on functions in

the span of the basis functions, is not convex, since

αδh1(t) + (1− α)δh2(t) /∈ Π,

where δh(t) denotes the Dirac measure. We extend the prior set to the convex hull

of the set of point masses:

Π(∆) =

{
I∑

i=1

αiδ∆wihi(t) :
I∑

i=1

αi = 1, αi ≥ 0,∆
I∑

i=1

wihi(t) ∈ HI(∆)

}
.

The following proposition shows the sense in which our maxmin Theorem 1 is

equivalent to solving the ambiguity-averse problem over the prior set Π(∆).

Proposition D.1. Let everything be as in Theorem 1, then

lim
∆↓0

sup
z∈Z

inf
h∈H(∆)

E(z, x+ h) = lim
∆↓0

sup
z∈Z

inf
h∈Π(∆)

EE(z, x+ h).

Proof. The expected value of equity for a probability measure in the prior set is

given by

EE(z, x+h) =
I∑

i=1

αi

(
J∑

j=1

zj

∫ T

0

e−x(t)−∆wihi(t) dFj(t)−
∫ T

0

e−x(t)−∆wihi(t) dF (t)

)
.

(D.1)

Using the decomposition in the proof of Theorem 1 we can express (D.1) as

I∑
i=1

αi

[ J∑
j=1

zj

(∫ T

0

e−x(t) dFj(t)−
∫ T

0

e−x(t)∆wihi(t) dFj(t) +O(∆2)

)
−(∫ T

0

e−x(t) dF (t)−
∫ T

0

e−x(t)∆wihi(t) dF (t) +O(∆2)

)]
.

By value-matching, the expression simplifies to

EE(z, x+ h)

= −∆
I∑

i=1

αiwi

[
J∑

j=1

zj

∫ T

0

e−x(t)hi(t) dFj(t)−
∫ T

0

e−x(t)hi(t) dF (t)

]
+O(∆2)

= −∆P (x)
I∑

i=1

αiwi

(
J∑

j=1

zjaij − bi

)
+O(∆2)

= −∆P (x) ⟨w̃, Az − b⟩+O(∆2),
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where w̃ = α ⊙ w, and ⊙ denotes the Hadamard (element-wise) product. Let

W̃ :=
{
α⊙ w :

∑I
i=1 αi = 1, αi ≥ 0, w ∈ W

}
. Clearly, it holds that

max
w̃∈W̃

⟨w̃, Az − b⟩ = max
w∈W

⟨w,Az − b⟩ ,

which completes the proof.

D.3 Generic full column rank of A+

The following proposition shows that the matrix A+ in (3.7) generically has full

column rank.

Proposition D.2. Let I ≥ J − 1, {hi}Ii=1 be the basis functions, and set h0 ≡ 1.

Suppose that there exist {iℓ}Jℓ=1 ⊂ {0, 1, . . . , I} with i1 = 0 and {τj}Jj=1 ⊂ (0, T ]

such that (i) at date τj, bond j makes a lump-sum payout fj := Fj(τj)−Fj(τj−) > 0,

and (ii) the J×J matrix H̃ = (hiℓ(τj)) is invertible. Then there exists a closed set

S ⊂ RJ with Lebesgue measure 0 such that the matrix A+ in (3.7) has full column

rank whenever (f1, . . . , fJ) /∈ S.

If in addition all bonds are zero-coupon bonds, then A+ has full column rank.

The fact that the set of (f1, . . . , fJ) for which A+ has rank deficiency is con-

tained in a closed set with Lebesgue measure 0 implies that the set of rank defi-

ciency is nowhere dense (has empty interior). In this sense the rank deficiency of

A+ is “rare”. To prove the result, we need the following lemma.

Lemma D.4. Let A,B be N × N matrices and define ϕ : RN → R by ϕ(x) =

det(A diag(x) + B), where diag(x) denotes the diagonal matrix with diagonal en-

tries x1, . . . , xN . If detA ̸= 0, then for any c ∈ R the set

ϕ−1(c) :=
{
x ∈ RN : ϕ(x) = c

}
is closed and has Lebesgue measure 0.

Proof. Since

det(A diag(x) +B) = det(A(diag(x) + A−1B))

= det(A)× det(diag(x) + A−1B),

without loss of generality we may assume that A is the identity matrix. Let

B = (bmn). That ϕ
−1(c) is closed is obvious because f is continuous.
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Let us show by induction on the dimension N that ϕ−1(c) is a null set. If

N = 1, then ϕ(x) = x1 + b11, so ϕ
−1(c) = {c− b11} is a singleton, which is a null

set. Suppose the claim holds when N = n−1 and consider n. Let Bn be the n×n
matrix obtained from the first n rows and columns of B, and let

ϕn(x1, . . . , xn) = det(diag(x1, . . . , xn) +Bn).

Clearly ϕn is affine in each variable x1, . . . , xn. Using the Laplace expansion along

the n-th column, it follows that

ϕn(x1, . . . , xn) = (xn + bnn)ϕn−1(x1, . . . , xn−1) + ψn−1(x1, . . . , xn−1)

for some function ψn−1 that is affine in each variable x1, . . . , xn−1.

Define the sets ϕ−1
n−1(0) ⊂ Rn−1 and G ⊂ Rn by

ϕ−1
n−1(0) := {(x1, . . . , xn−1) : ϕn−1(x1, . . . , xn−1) = 0} ,

G :=
{
(x1, . . . , xn) : (x1, . . . , xn−1) /∈ ϕ−1

n−1(0), xn = (c− ψn−1)/ϕn−1 − bnn
}
.

Then ϕ−1
n (c) ⊂ (ϕ−1

n−1(0) × R) ∪ G. By the induction hypothesis, ϕ−1
n−1(0) has

measure 0 in Rn−1. Since G is the graph of a Borel measurable function, by

Fubini’s theorem it has measure 0. Therefore ϕ−1
n (c) is a null set.

Proof of Proposition D.2. Define h : [0, T ] → RI by h(t) = (h0(t), h1(t), . . . , hI(t))
′.

Let the j-th column vector of A+ be aj = (a0j, . . . , aIj)
′. By assumption, bond j

pays fj > 0 at τj ∈ (0, T ], so it follows from (3.3) that

aj =
1

P (x)

∫
[0,T ]\{τj}

e−x(t)h(t) dFj(t) +
1

P (x)
e−x(τj)fjh(τj) =: pjfj + qj. (D.2)

Collecting (D.2) into a matrix, we can write A+ = P diag(f) +Q, where P,Q are

matrices with j-th column vectors pj,qj and f = (f1, . . . , fJ). To show that A+

generically has full column rank, let Ã+ be the J × J matrix obtained by taking

its iℓ-th row for ℓ = 1, . . . , J . Define P̃ , Q̃ similarly. Then Ã+ = P̃ diag(f) + Q̃.

Since pj = e−x(τj)h(τj)/P (x), we obtain

det P̃ = P (x)−J

(
J∏

j=1

e−x(τj)

)
det H̃ ̸= 0.

Therefore by Lemma D.4, Ã+ is generically invertible, so A+ has generically full
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column rank.

If in addition all bonds are zero-coupon bonds, then (D.2) reduces to aj =

e−x(τj)fjh(τj)/P (x), where τj is the maturity. Then A+ = P diag(f), which has

full column rank because det P̃ ̸= 0 and fj > 0 for all j.

The following example shows that the zero-coupon bond assumption in Propo-

sition D.2 is essential.

Example 4. Suppose I = J − 1 = 1 and the basis function is h1(t) = t. Bond

1 is a zero-coupon bond with face value f1 > 0 and maturity t1. Bond 2 pays

fn > 0 at time tn, where n = 2, 3. To simplify notation, write x(t1) = x1 etc. The

determinant of the matrix A+ is

detA+ = P (x)−2 det

[
f1e

−x1 f2e
−x2 + f3e

−x3

f1e
−x1t1 f2e

−x2t2 + f3e
−x3t3

]
= P (x)−2f1e

−x1
(
f2e

−x2(t2 − t1) + f3e
−x3(t3 − t1)

)
.

Therefore for any t2 < t1 < t3 and f3 > 0, we have detA+ = 0 if and only if

(f1, f2) ∈
{
(f1, f2) ∈ R2

++ : f2 = f3e
x2−x3

t3 − t1
t1 − t2

}
. (D.3)

The closure of the rank deficiency set (D.3) is a ray in R2 and has measure 0.

D.4 Bias in the estimated yield curve

In our empirical application in Section 5, we assume that the forward rate is

constant beyond the 30-year maturity, f(t) = f(30) for all t ≥ 30. As a result,

the inferred date s yield curve with term t ≥ 30 satisfies14

ŷs(t) :=
1

t

∫ t

0

fs(u) du =
1

t

∫ 30

0

fs(u) du+
1

t

∫ t

30

fs(30) du

=
1

t

∫ 30

0

fs(u) du+ fs(30)−
30

t
fs(30)

= fs(30) +O

(
1

t

)
.

14Throughout we ignore the approximation error coming from misspecification of the forward
rate model.
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Taking unconditional expectations and comparing to the true (unobserved) yield,

we obtain

E [ŷs(t)− ys(t)] = E [fs(30)− ys(t)] +O

(
1

t

)
= E [fs(30)− fs(t)] + E [fs(t)− ys(t)] +O

(
1

t

)
. (D.4)

Under integrability conditions on ys(t) and a mild stationarity assumption on bond

returns, Alvarez and Jermann (2005, Proposition 5) show that

E
[
lim
t→∞

fs(t)
]
= E

[
lim
t→∞

ys(t)
]
. (D.5)

Using the dominated convergence theorem and (D.5) in (D.4), we get

E [ŷs(t)] = E [ys(t)] + E [fs(30)− fs(t)] + o(1).

Hence, on average we estimate the correct yield plus a bias term that reflects the

average gap between the 30-year forward rate and long forward rate.

D.5 Key rate duration matching

This appendix explains the key rate duration matching method of Ho (1992). The

key rate duration of a bond with yield curve y and yield change ∆ at time to

maturity t is defined by

KRD(y, t,∆) :=
P (y−)− P (y+)

2∆P (y)
,

where y± denotes the yield curve after changing y(t) to y(t)±∆ at a specific term

t and linearly interpolating between the adjacent terms. Following the literature,

we set the shift to ∆ = 0.01 (100 basis points). Figure 7 illustrates the procedure

for a set of key rates on December 2, 2016.15

In our simulation, we consider five zero-coupon bonds and aim to match the

liability’s key rate exposures at the maturities of these bonds. In addition, we

impose a value-matching constraint to ensure consistency with other immunization

methods. This leads to six restrictions and five unknowns. To determine the

optimal portfolio, we minimize the mean squared distance between the key rate

15The key rate duration of a zero-coupon bond with maturity t is equal to t and zero otherwise.
Since we use linear interpolation after a key rate perturbation to keep the yield curve continuous,
the key rate for a zero-coupon bond with maturity t is not exactly equal to t in our application.
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exposures of the bond portfolio and those of the liability, subject to the value-

matching constraint.
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Figure 7: Key rate perturbations.

Note: The figures show positive and negative perturbations to the yield curve due to a 1% change
in the respective key rate. We linearly interpolate the yields after a change in the key rate to
ensure that the yield curve remains continuous. The true yield curve (in blue) is calculated on
December 2, 2016.
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